Ultrathin porous graphitic carbon nitride from recrystallized precursor toward significantly enhanced photocatalytic water splitting.

J Colloid Interface Sci

International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China.

Published: May 2023

Structure regulation (including electronic structure and morphology) for graphitic carbon nitride (g-CN) is an effective way to promote the photocatalytic activity. Herein, an ultrathin porous g-CN (BCN-HT100) was synthesized by calcination of biuret hydrate. Hydrothermal treatment induced biuret recrystallization to form biuret hydrate precursor with regular morphology and large crystal size, thus promoting the polymerization of melem to form g-CN network. Accordingly, BCN-HT100 possessed ultrathin nanosheet structure, higher polymerization degree, larger surface area and more pores than biuret-derived g-CN. BCN-HT100 behaved high-efficiency photocatalytic H-productin activity with an apparent quantum yield (AQY) of 58.7% at 405 nm due to the enhanced utilization efficiency for photo-generated charge carriers and abundant reactive sites. Furthermore, Pt-NiCoO dual cocatalysts were employed on BCN-HT100 for achieving photocatalytic overall water splitting, and the AQY reached 4.9% at 405 nm. This work provides a meaningful reference to designing g-CN to achieve efficient solar energy conversion into hydrogen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.01.098DOI Listing

Publication Analysis

Top Keywords

ultrathin porous
8
graphitic carbon
8
carbon nitride
8
photocatalytic water
8
water splitting
8
g-cn bcn-ht100
8
biuret hydrate
8
g-cn
5
porous graphitic
4
nitride recrystallized
4

Similar Publications

Carbon-supported Pt-based catalysts are the most effective catalysts for direct methanol fuel cells (DMFCs). However, challenges such as high Pt loading, cost, and susceptibility to CO poisoning severely hinder the development of DMFCs. In this paper, CoFeO@polymer@ZIF-67 is prepared successfully through sequential solution polymerization and in situ growth with modified CoFeO as the core.

View Article and Find Full Text PDF

Mechanically Stable and Damage Resistant Freestanding Ultrathin Silver Nanowire Films with Closely Packed Crossed-Lamellar Structure.

Precis Chem

December 2024

Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.

One-dimensional (1D) functional nanowires are widely used as nanoscale building blocks for assembling advanced nanodevices due to their unique functionalities. However, previous research has mainly focused on nanowire functionality, while neglecting the structural stability and damage resistance of nanowire assemblies, which are critical for the long-term operation of nanodevices. Biomaterials achieve excellent mechanical stability and damage resistance through sophisticated structural design.

View Article and Find Full Text PDF

This work developed a novel oxidized hierarchical porous carbon (OHPC) with vesicule-like ultrathin graphitic walls via a method of air oxidation and used as an efficient adsorbent for Congo red (CR) and Malachite green (MG) removal. Results show that the OHPC2 oxidized at 400 °C possesses three-dimensional hierarchical pores with vesicule-like ultrathin graphitic walls. The prepared OHPC2 not only has a large specific surface area of 1020 m g with a high pore volume, but also has abundant oxygen-containing functional groups.

View Article and Find Full Text PDF

Mass-fraction-optimized heterojunction composites featuring precisely engineered interfaces and mesoporous structures are crucial for improving light absorption, minimizing electron-hole recombination, and boosting overall catalytic efficiency. Herein, highly efficient mesoporous-NiFe2O4@g-C3N4 heterojunctions were developed by embedding p-type NiFe2O4 nanoparticles (NPs) within n-type porous ultrathin g-C3N4 (p-uCN) nanosheets. The optimized NiFe2O4@g-C3N4, loaded with 20wt% magnetic counterparts, exhibits exceptional photocatalytic methylene blue degradation, achieving the highest performance in both photocatalytic and photo-Fenton processes with rate constants of 0.

View Article and Find Full Text PDF

Ultrathin polymer membranes on porous substrates exhibit excellent gas and ion permeability and have important applications in many fields, such as membrane separation and batteries. However, there is still a lack of facile and general methods for the direct preparation of ultrathin polymer membranes on porous substrates, especially from polymer solutions. Within this work, a new strategy to fabricate centimeter-size ultrathin polymer membranes (thickness down to 16 nm) is presented directly on porous supports by using the liquid-liquid interfacial spin-coating technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!