Introduction: Due to the heterogeneous clinical presentation of spastic cerebral palsy (SCP), which makes spasticity treatment challenging, more insight into the complex interaction between spasticity and altered muscle morphology is warranted.
Aims: We studied associations between spasticity and muscle morphology and compared muscle morphology between commonly observed spasticity patterns (i.e. different muscle activation patterns during passive stretches).
Methods: Spasticity and muscle morphology of the medial gastrocnemius (MG) and semitendinosus (ST) were defined in 74 children with SCP (median age 8 years 2 months, GMFCS I/II/III: 31/25/18, bilateral/unilateral: 46/27). Using an instrumented assessment, spasticity was quantified as the difference in muscle activation recorded during passive stretches at low and high velocities and was classified in mixed length-/velocity-dependent or pure velocity-dependent activation patterns. Three-dimensional freehand ultrasound was used to assess muscle morphology (volume and length) and echogenicity intensity (as a proxy for muscle quality). Spearman correlations and Mann-Whitney-U tests defined associations and group differences, respectively.
Results: A moderate negative association (r = -0.624, p < 0.001) was found between spasticity and MG muscle volume, while other significant associations between spasticity and muscle morphology parameters were weak. Smaller normalized muscle volume (MG p = 0.004, ST p=<0.001) and reduced muscle belly length (ST p = 0.015) were found in muscles with mixed length-/velocity-dependent patterns compared to muscles with pure velocity-dependent patterns.
Discussion: Higher spasticity levels were associated with smaller MG and ST volumes and shorter MG muscles. These muscle morphology alterations were more pronounced in muscles that activated during low-velocity stretches compared to muscles that only activated during high-velocity stretches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpn.2023.01.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!