Machine learning in environmental radon science.

Appl Radiat Isot

The National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, 263-8555, Chiba, Japan. Electronic address:

Published: April 2023

Temporal dynamic as well as spatial variability of environmental radon are controlled by factors such as meteorology, lithology, soil properties, hydrogeology, tectonics, and seismicity. In addition, indoor radon concentration is subject to anthropogenic factors, such as physical characteristics of a building and usage pattern. New tools for spatial and time series analysis and prediction belong to what is commonly called machine learning (ML). The ML algorithms presented here build models based on sample and predictor data to extract information and to make predictions. We give a short overview on ML methods and discuss their respective merits, their application, and ways of validating results. We show examples of 1) geogenic radon mapping in Germany involving a number of predictors, and of 2) time series analysis of a long-term experiment being carried out in Chiba, Japan, involving indoor radon concentrations and meteorological predictors. Finally, we identified the main weakness of the techniques, and we suggest actions to overcome their limitations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2023.110684DOI Listing

Publication Analysis

Top Keywords

machine learning
8
environmental radon
8
indoor radon
8
time series
8
series analysis
8
radon
5
learning environmental
4
radon science
4
science temporal
4
temporal dynamic
4

Similar Publications

deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities.

J Chem Inf Model

January 2025

School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.

Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.

View Article and Find Full Text PDF

Background: Falls are among the most prevalent workplace accidents, necessitating thorough screening for susceptibility to falls and customization of individualized fall prevention programs. The aim of this study was to develop and validate a high fall risk prediction model using machine learning (ML) and video-based first three steps in middle-aged workers.

Methods: Train data (n=190, age 54.

View Article and Find Full Text PDF

Background: Neoadjuvant chemotherapy is standard for advanced esophageal squamous cell carcinoma, though often ineffective. Therefore, predicting the response to chemotherapy before treatment is desirable. However, there is currently no established method for predicting response to neoadjuvant chemotherapy.

View Article and Find Full Text PDF

The Impact of Artificial Intelligence and Machine Learning in Organ Retrieval and Transplantation: A Comprehensive Review.

Curr Res Transl Med

January 2025

Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom; Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, United Kingdom.

This narrative review examines the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in organ retrieval and transplantation. AI and ML technologies enhance donor-recipient matching by integrating and analyzing complex datasets encompassing clinical, genetic, and demographic information, leading to more precise organ allocation and improved transplant success rates. In surgical planning, AI-driven image analysis automates organ segmentation, identifies critical anatomical features, and predicts surgical outcomes, aiding pre-operative planning and reducing intraoperative risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!