Driven Tracer in the Symmetric Exclusion Process: Linear Response and Beyond.

Phys Rev Lett

Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France.

Published: January 2023

Tracer dynamics in the symmetric exclusion process (SEP), where hard-core particles diffuse on an infinite one-dimensional lattice, is a paradigmatic model of anomalous diffusion. While the equilibrium situation has received a lot of attention, the case where the tracer is driven by an external force, which provides a minimal model of nonequilibrium transport in confined crowded environments, remains largely unexplored. Indeed, the only available analytical results concern the means of both the position of the tracer and the lattice occupation numbers in its frame of reference and higher-order moments but only in the high-density limit. Here, we provide a general hydrodynamic framework that allows us to determine the first cumulants of the bath-tracer correlations and of the tracer's position in function of the driving force, up to quadratic order (beyond linear response). This result constitutes the first determination of the bias dependence of the variance of a driven tracer in the SEP for an arbitrary density. The framework presented here can be applied, beyond the SEP, to more general configurations of a driven tracer in interaction with obstacles in one dimension.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.130.020402DOI Listing

Publication Analysis

Top Keywords

driven tracer
12
symmetric exclusion
8
exclusion process
8
linear response
8
tracer
5
driven
4
tracer symmetric
4
process linear
4
response tracer
4
tracer dynamics
4

Similar Publications

Peptide-based PET/CT imaging visualizes PD-L1-driven radioresistance in glioblastoma.

Drug Resist Updat

January 2025

Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:

Radioresistance remains a great challenge for radiotherapy in the treatment of glioblastoma (GBM). PD-L1 expression is a key contributor to radioresistance and immune escape in GBM. The lack of effective methods to monitor the change of PD-L1 during radiotherapy in patients limits timely intervention and management of the resistance.

View Article and Find Full Text PDF

Coastal ecosystems play a major role in marine carbon budgets, but substantial uncertainties remain in the sources and fluxes of coastal carbon dioxide (CO). Here, we assess when, where, and how submarine groundwater discharge (SGD) releases CO to shallow coastal ecosystems. Time-series observations of dissolved CO and radon (Rn, a natural groundwater tracer) across 40 coastal systems from 14 countries revealed large SGD-derived CO fluxes.

View Article and Find Full Text PDF

Non-[F]FDG PET-Radiopharmaceuticals in Oncology.

Pharmaceuticals (Basel)

December 2024

Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.

Molecular imaging is a growing field, driven by technological advances, such as the improvement of PET-CT scanners through the introduction of digital detectors and scanners with an extended field of view, resulting in much higher sensitivity and a variety of new specific radiopharmaceuticals that allow the visualization of specific molecular pathways and even theragnostic approaches. In oncology, the development of dedicated tracers is crucial for personalized therapeutic approaches. Novel peptides allow the visualization of many different targets, such as PD-1 and PD-L1 expression, chemokine expression, HER expression, T-cell imaging, microenvironmental imaging, such as FAP imaging, and many more.

View Article and Find Full Text PDF

Advancements in neuroimaging, particularly diffusion magnetic resonance imaging (MRI) techniques and molecular imaging with positron emission tomography (PET), have significantly enhanced the early detection of biomarkers in neurodegenerative and neuro-ophthalmic disorders. These include Alzheimer's disease, Parkinson's disease, multiple sclerosis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. This review highlights the transformative role of advanced diffusion MRI techniques-Neurite Orientation Dispersion and Density Imaging and Diffusion Kurtosis Imaging-in identifying subtle microstructural changes in the brain and visual pathways that precede clinical symptoms.

View Article and Find Full Text PDF

Current Progress and Future Directions in Non-Alzheimer's Disease Tau PET Tracers.

ACS Chem Neurosci

January 2025

Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Miyagi 980-0845, Japan.

Alzheimer's disease (AD) and non-AD tauopathies are dominant public health issues driven by several factors, especially in the aging population. The discovery of first-generation radiotracers, including [F]FDDNP, [C]PBB3, [F]flortaucipir, and the [F]THK series, for the in vivo detection of tauopathies has marked a significant breakthrough in the fields of neuroscience and radiopharmaceuticals, creating a robust new category of labeled compounds: tau positron emission tomography (PET) tracers. Subsequently, other tau PET tracers with improved binding properties have been developed using various chemical scaffolds to target the three-repeat/four-repeat (3R/4R) tau folds in AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!