Systemic messenger RNA (mRNA) delivery to organs outside the liver, spleen, and lungs remains challenging. To overcome this issue, we hypothesized that altering nanoparticle chemistry and administration routes may enable mRNA-induced protein expression outside of the reticuloendothelial system. Here, we describe a strategy for delivering mRNA potently and specifically to the pancreas using lipid nanoparticles. Our results show that delivering lipid nanoparticles containing cationic helper lipids by intraperitoneal administration produces robust and specific protein expression in the pancreas. Most resultant protein expression occurred within insulin-producing β cells. Last, we found that pancreatic mRNA delivery was dependent on horizontal gene transfer by peritoneal macrophage exosome secretion, an underappreciated mechanism that influences the delivery of mRNA lipid nanoparticles. We anticipate that this strategy will enable gene therapies for intractable pancreatic diseases such as diabetes and cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882987PMC
http://dx.doi.org/10.1126/sciadv.ade1444DOI Listing

Publication Analysis

Top Keywords

lipid nanoparticles
16
protein expression
12
gene transfer
8
mrna delivery
8
mrna
5
ionizable lipid
4
nanoparticles
4
nanoparticles deliver
4
deliver mrna
4
mrna pancreatic
4

Similar Publications

Lipid nanoparticles deliver DNA-encoded biologics and induce potent protective immunity.

Mol Cancer

January 2025

Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.

Lipid nanoparticles (LNPs) for mRNA delivery have advanced significantly, but LNP-mediated DNA delivery still faces clinical challenges. This study compared various LNP formulations for delivering DNA-encoded biologics, assessing their expression efficacy and the protective immunity generated by LNP-encapsulated DNA in different models. The LNP formulation used in Moderna's Spikevax mRNA vaccine (LNP-M) demonstrated a stable nanoparticle structure, high expression efficiency, and low toxicity.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) stands as the predominant form of primary liver cancer, characterized by a dismal prognosis. Therapeutic options for advanced HCC remain sparse, with efficacy significantly hampered by the emergence of drug resistance. In parallel with research into novel pharmacological agents, advances in drug delivery systems represent a promising avenue for overcoming resistance.

View Article and Find Full Text PDF

Epigenetics mechanisms play a significant role in human diseases by altering DNA methylation status, chromatin structure, and/or modifying histone proteins. By modulating the epigenetic status, the expression of genes can be regulated without any change in the DNA sequence itself. Epigenetic drugs exhibit promising therapeutic efficacy against several epigenetically originated diseases including several cancers, neurodegenerative diseases, metabolic disorders, cardiovascular disorders, and so forth.

View Article and Find Full Text PDF

Lipid nanoparticles (LNP) have shown great promise in clinical applications for delivering mRNA. Targeted delivery of mRNA to particular tissues or organs is essential for precise therapeutic outcomes and minimized side effects in various disease models. However, achieving targeted delivery beyond the liver is a challenge based on current LNP formulations.

View Article and Find Full Text PDF

Hybrid lipid nanoparticles with tumor antigen-primed dendritic cell membranes for post-surgical tumor immunotherapy.

J Control Release

January 2025

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Post-surgical tumor recurrence poses a major challenge in cancer treatment due to residual tumor cells and surgery-induced immunosuppression. Here, we developed hybrid nanoparticles, termed T-DCNPs, designed to promote antigen-specific activation of cytotoxic CD8+ T cells while concurrently inhibiting immunosuppressive pathways within the tumor microenvironment. T-DCNPs were formulated by co-extruding lipid nanoparticles containing a transforming growth factor β inhibitor with dendritic cells that were pre-treated with autologous neoantigens derived from surgically excised tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!