Spinning thermal radiation is a unique phenomenon observed in condensed astronomical objects, including the Wolf-Rayet star EZ-CMa and the red degenerate star G99-47, due to the existence of strong magnetic fields. Here, by designing symmetry-broken metasurfaces, we demonstrate that spinning thermal radiation with a nonvanishing optical helicity can be realized even without applying a magnetic field. We design nonvanishing optical helicity by engineering a dispersionless band that emits omnidirectional spinning thermal radiation, where our design reaches 39% of the fundamental limit. Our results firmly suggest that metasurfaces can impart spin coherence in the incoherent radiation excited by thermal fluctuations. The symmetry-based design strategy also provides a general pathway for controlling thermal radiation in its temporal and spin coherence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882974PMC
http://dx.doi.org/10.1126/sciadv.ade4203DOI Listing

Publication Analysis

Top Keywords

thermal radiation
20
nonvanishing optical
12
optical helicity
12
spinning thermal
12
symmetry-broken metasurfaces
8
spin coherence
8
thermal
6
radiation
6
observation nonvanishing
4
helicity thermal
4

Similar Publications

Effect of Ultrasound Treatment on Structural and Physical Properties of Native Maize Starch.

Plant Foods Hum Nutr

January 2025

Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) - CONICET-UNC, Av. Juan Filloy S/N, Ciudad Universitaria, Córdoba, Argentina.

The focus of this work was to evaluate the differences between the thermal and mechanical effects generated by ultrasound waves on the properties of corn starch, which facilitate the subsequent enzymatic hydrolysis for the generation of porous starches. The results showed that both the thermal and mechanical effects have the capacity to disorganize/alter the structure of starch, impacting on its properties. Characteristics such as particle size, pasting and thermal properties (peak viscosity 1400-1800 cp.

View Article and Find Full Text PDF

Superstrong Lightweight Aerogel with Supercontinuous Layer by Surface Reaction.

Adv Mater

January 2025

Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, National Synchrotron Radiation Laboratory, Center for Micro and Nanoscale Research and Fabrication, Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230026, P. R. China.

Breaking the thermal, mechanical and lightweight performance limit of aerogels has pivotal significance on thermal protection, new energy utilization, high-temperature catalysis, structural engineering, and physics, but is severely limited by the serious discrete characteristics between grain boundary and nano-units interfaces. Herein, a thermodynamically driven surface reaction and confined crystallization process is reported to synthesize a centimeter-scale supercontinuous ZrO nanolayer on ZrO-SiO fiber aerogel surface, which significantly improved its thermal and mechanical properties with density almost unchanged (≈26 mg cm). Systematic structure analysis confirms that the supercontinuous layer achieves a close connection between grains and fibers through Zr─O─Si bonds.

View Article and Find Full Text PDF

This paper presents an in-depth analytical investigation into the time-dependent flow of a Casson hybrid nanofluid over a radially stretching sheet. The study introduces the effects of magnetic fields and thermal radiation, along with velocity and thermal slip, to model real-world systems for enhancing heat transfer in critical industrial applications. The hybrid nanofluid consists of three nanoparticles-Copper and Graphene Oxide-suspended in Kerosene Oil, selected for their stable and superior thermal properties.

View Article and Find Full Text PDF

Optimized Interface Engineering Enhances Carrier and Phonon Scattering for Superior Thermoelectric Performance in Yb-Filled Skutterudites.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.

Thermoelectric (TE) performance in materials is often constrained by the strong coupling between carrier and phonon transport, necessitating trade-offs between electrical and thermal properties that limit improvements in the figure of merit (). Herein, a novel strategy is proposed to achieve simultaneous energy filtering and enhanced phonon scattering, effectively optimizing the TE properties of CoSb-based skutterudites. By introducing CuTe nanoprecipitates into the YbCoSb matrix, interfacial barriers are formed, which selectively filter low-energy charge carriers, significantly improving the Seebeck coefficient while maintaining high carrier mobility.

View Article and Find Full Text PDF

Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!