Pathogenic fungi of section are known to produce various secondary metabolites. A reported isolation of a compound with an atypical carbon skeleton called fumimycin from prompted us to examine a related fungus, , for production of similar products. Here we report the isolation of fumimycin and a related new racemic compound we named lentofuranine. Detailed analyses revealed that both compounds were assembled by a nonenzymatic condensation of a polyketide intermediate from the terrein biosynthetic pathway and a highly reactive azlactone intermediate produced by an unrelated nonribosomal peptide synthetase carrying a terminal condensation-like domain. While highly reactive azlactone is commonly used in chemical synthesis, its production by a conventional non-metalloenzyme and employment as a biosynthetic pathway intermediate is unprecedented. The observed unusual carbon skeleton formation is likely due to the reactivity of azlactone. Our finding provides another example of a chemical principle being aptly exploited by a biological system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c13188DOI Listing

Publication Analysis

Top Keywords

reactive azlactone
12
azlactone intermediate
8
carbon skeleton
8
biosynthetic pathway
8
highly reactive
8
intermediate
4
intermediate drives
4
drives fungal
4
fungal secondary
4
secondary metabolite
4

Similar Publications

This work establishes the design of a fully synthetic, shear-thinning hydrogel platform that is injectable and can isolate engineered, allogeneic cell therapies from the host. We utilized RAFT to generate a library of linear random copolymers of N,N-dimethylacrylamide (DMA) and 2-vinyl-4,4-dimethyl azlactone (VDMA) with variable mol% VDMA and degree of polymerization. Poly(DMA-co-VDMA) copolymers were subsequently modified with either adamantane (Ad) or β-cyclodextrin (Cd) through amine-reactive VDMA to prepare hydrogel precursor macromers containing complementary guest-host pairing pendant groups that, when mixed, form shear-thinning hydrogels.

View Article and Find Full Text PDF

ROMP-based Glycopolymers with High Affinity for Mannose-Binding Lectins.

Biomacromolecules

August 2023

Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 France.

Well-defined, highly reactive poly(norbornenyl azlactone)s of controlled length (number-average degree of polymerization = 10 to 1,000) were made by ring-opening metathesis polymerization (ROMP) of pure -norbornenyl azlactone. These were converted into glycopolymers using a facile postpolymerization modification (PPM) strategy based on click aminolysis of azlactone side groups by amino-functionalized glycosides. Pegylated mannoside, heptyl-mannoside, and pegylated glucoside were used in the PPM.

View Article and Find Full Text PDF

Pathogenic fungi of section are known to produce various secondary metabolites. A reported isolation of a compound with an atypical carbon skeleton called fumimycin from prompted us to examine a related fungus, , for production of similar products. Here we report the isolation of fumimycin and a related new racemic compound we named lentofuranine.

View Article and Find Full Text PDF

Poly 2-vinyl-4,4-dimethylazlactone (PVDMA) has received much attention as a "reactive platform" to prepare charge-shifting polycations via post-polymerization modification with tertiary amines that possess primary amine or hydroxyl reactive handles. Upon hydrolysis of the resulting amide or ester linkages, the polymers can undergo a gradual transition in net charge from cationic to anionic. Herein, a systematic investigation of the hydrolysis rate of PVDMA-derived charge-shifting polymers is described.

View Article and Find Full Text PDF

Impact of chemistry on the preparation and post-modification of multilayered hollow microcapsules.

Chem Commun (Camb)

March 2021

Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India and Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.

In the last few years, various chemical bondings and interactions were rationally adopted to develop different multilayered microcapsules, where the empty interior accommodated various important cargoes, including bioactive molecules, nanoparticles, antibodies, enzymes, etc., and the thin membrane protected/controlled the release of the loaded cargo. Eventually, such materials are with immense potential for a wide range of prospective applications related to targeted drug delivery, sensing, bio-imaging, developing biomimetic microreactors, and so on.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!