Development and Validation of Multivariable Prediction Algorithms to Estimate Future Walking Behavior in Adults: Retrospective Cohort Study.

JMIR Mhealth Uhealth

Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, United States.

Published: January 2023

Background: Physical inactivity is associated with numerous health risks, including cancer, cardiovascular disease, type 2 diabetes, increased health care expenditure, and preventable, premature deaths. The majority of Americans fall short of clinical guideline goals (ie, 8000-10,000 steps per day). Behavior prediction algorithms could enable efficacious interventions to promote physical activity by facilitating delivery of nudges at appropriate times.

Objective: The aim of this paper is to develop and validate algorithms that predict walking (ie, >5 min) within the next 3 hours, predicted from the participants' previous 5 weeks' steps-per-minute data.

Methods: We conducted a retrospective, closed cohort, secondary analysis of a 6-week microrandomized trial of the HeartSteps mobile health physical-activity intervention conducted in 2015. The prediction performance of 6 algorithms was evaluated, as follows: logistic regression, radial-basis function support vector machine, eXtreme Gradient Boosting (XGBoost), multilayered perceptron (MLP), decision tree, and random forest. For the MLP, 90 random layer architectures were tested for optimization. Prior 5-week hourly walking data, including missingness, were used for predictors. Whether the participant walked during the next 3 hours was used as the outcome. K-fold cross-validation (K=10) was used for the internal validation. The primary outcome measures are classification accuracy, the Mathew correlation coefficient, sensitivity, and specificity.

Results: The total sample size included 6 weeks of data among 44 participants. Of the 44 participants, 31 (71%) were female, 26 (59%) were White, 36 (82%) had a college degree or more, and 15 (34%) were married. The mean age was 35.9 (SD 14.7) years. Participants (n=3, 7%) who did not have enough data (number of days <10) were excluded, resulting in 41 (93%) participants. MLP with optimized layer architecture showed the best performance in accuracy (82.0%, SD 1.1), whereas XGBoost (76.3%, SD 1.5), random forest (69.5%, SD 1.0), support vector machine (69.3%, SD 1.0), and decision tree (63.6%, SD 1.5) algorithms showed lower performance than logistic regression (77.2%, SD 1.2). MLP also showed superior overall performance to all other tried algorithms in Mathew correlation coefficient (0.643, SD 0.021), sensitivity (86.1%, SD 3.0), and specificity (77.8%, SD 3.3).

Conclusions: Walking behavior prediction models were developed and validated. MLP showed the highest overall performance of all attempted algorithms. A random search for optimal layer structure is a promising approach for prediction engine development. Future studies can test the real-world application of this algorithm in a "smart" intervention for promoting physical activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919492PMC
http://dx.doi.org/10.2196/44296DOI Listing

Publication Analysis

Top Keywords

prediction algorithms
8
development validation
4
validation multivariable
4
multivariable prediction
4
algorithms
4
algorithms estimate
4
estimate future
4
future walking
4
walking behavior
4
behavior adults
4

Similar Publications

Background: Artificial intelligence (AI) social chatbots represent a major advancement in merging technology with mental health, offering benefits through natural and emotional communication. Unlike task-oriented chatbots, social chatbots build relationships and provide social support, which can positively impact mental health outcomes like loneliness and social anxiety. However, the specific effects and mechanisms through which these chatbots influence mental health remain underexplored.

View Article and Find Full Text PDF

This study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons.

View Article and Find Full Text PDF

Urban waterfront areas, which are essential natural resources and highly perceived public areas in cities, play a crucial role in enhancing urban environment. This study integrates deep learning with human perception data sourced from street view images to study the relationship between visual landscape features and human perception of urban waterfront areas, employing linear regression and random forest models to predict human perception along urban coastal roads. Based on aesthetic and distinctiveness perception, urban coastal roads in Xiamen were classified into four types with different emphasis and priorities for improvement.

View Article and Find Full Text PDF

Stock price prediction is a challenging research domain. The long short-term memory neural network (LSTM) widely employed in stock price prediction due to its ability to address long-term dependence and transmission of historical time signals in time series data. However, manual tuning of LSTM parameters significantly impacts model performance.

View Article and Find Full Text PDF

Student performance is crucial for addressing learning process problems and is also an important factor in measuring learning outcomes. The ability to improve educational systems using data knowledge has driven the development of the field of educational data mining research. Here, this paper proposes a machine learning method for the prediction of student performance based on online learning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!