AI Article Synopsis

  • Researchers developed a composite of porous sludge biochar (PSDBC) and zero-valent iron (ZVI@PSDBC) to enhance the activation of persulfate (PS) for degrading 2,4-dichlorophenol (2,4-DCP) in wastewater.
  • Both the PSDBC/PS and ZVI@PSDBC/PS systems achieved near-complete removal of 2,4-DCP within 20 minutes, with mineralization rates reaching 73.7% and 91.6% after 60 minutes, respectively.
  • Characterization techniques showed that the unique structure and conductivity of the composites aided in radical production and efficient electron transfer, demonstrating their potential for effective wastewater

Article Abstract

Porous sludge biochar (PSDBC) and zero-valent iron (ZVI) supported on porous sludge biochar composite (ZVI@PSDBC) were synthesized using municipal sludge through pyrolysis under N atmosphere, which manifested upgraded performance in persulfate (PS) activation for 2,4-dichlorophenol (2,4-DCP) degradation. The 2,4-DCP (50 mg/L) could be almost completely removed within 20 min under relatively low PS dosage (0.5 mmol/L) in both PSDBC/PS and ZVI@PSDBC/PS systems, and the mineralization rate could respectively approach 73.7% and 91.6% in 60 min. Combined with a scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) characterization and electron spin-resonance (ESR) detection, electrochemical analysis, the radical and non-radical pathways in the catalytic systems were discussed. Graphitized structure and superior conductivity made PSDBC and ZVI@PSDBC not only act as electron donors in PS activation to create radicals (mainly SO and ·OH), but also as "mediators" to facilitate the direct electron transfer from 2,4-DCP to the catalysts-PS complexes. The C=O groups of PSDBC and ZVI@PSDBC aided in the production of O. Meanwhile, zero-valent iron nanoparticles promoted the formation of radicals as the reactive sites of PS, resulting in the most effective 2,4-DCP degradation in the ZVI@PSDBC/PS system. The stability and practicability of sludge biochar materials had been demonstrated in reusability and actual wastewater experiments. The findings provided a promising way for the reuse of municipal sludge and effective PS activation in wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-25504-9DOI Listing

Publication Analysis

Top Keywords

sludge biochar
12
persulfate activation
8
porous sludge
8
zero-valent iron
8
municipal sludge
8
24-dcp degradation
8
psdbc zvi@psdbc
8
sludge
5
activation sludge-derived
4
biochar
4

Similar Publications

Co-pyrolysis is an efficient approach for municipal sewage sludge (SS) treatment, facilitating the production of biochar and promoting the stabilization and removal of heavy metals, particularly when combined with chlorinated materials. This study explores the impact of pyrolysis temperatures (400 °C and 600 °C) and chlorinated additives (polyvinyl chloride (PVC) as an organic chloride source and ferric chloride (FeCl) as an inorganic chloride source) at 10% and 20% concentrations, on the yield, chemical speciation, leachability, and ecological risks of arsenic (As), chromium (Cr), and zinc (Zn) in biochar derived from SS. The results revealed that increasing the pyrolysis temperature from 400 to 600 °C significantly reduced biochar yield due to enhanced volatilization of organic components, as well as the removal of heavy metals in interaction with chlorinated materials.

View Article and Find Full Text PDF

Engineered alginate-polyethyleneimine and sludge-aluminosilicate biochar composites for greywater treatment: Performance evaluation and models for designing pilot-scale systems.

Environ Res

January 2025

Department of Environment Sciences and Engineering, The Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 166 Rosenau, Campus Box # 7431, NC 27599, Chapel Hill, North Carolina, USA. Electronic address:

Greywater, originating from kitchen sinks and toilets, constitutes 75-80 % of the domestic wastewater produced in homes and can be reclaimed for non-potable uses. This study synthesized novel sludge-derived aluminosilicates and alginate-polyethyleneimine (PEI) biochar composites. The aluminosilicates offer a sustainable approach to sludge management, while alginate-polyethyleneimine presents a green biochar modification approach.

View Article and Find Full Text PDF

The spread of antibiotic resistance genes (ARGs) in rural wastewater threatens both ecological environment and human health. Earthworm ecological filters (EEFs) represent a green technology for rural sewage treatment. However, their effectiveness in removing ARGs remains a significant challenge.

View Article and Find Full Text PDF

Corrigendum: High-carbon-content biochar from chemical manufacturing plant sludge for effective removal of ciprofloxacin from aqueous media.

Chemosphere

January 2025

Department of Environmental Engineering, Chungbuk national university, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea. Electronic address:

View Article and Find Full Text PDF

Enhancing the passivation of heavy metals and increasing organic matter content during the composting of sewage sludge poses significant challenges for maximizing its utilization value. Results indicated that in the control, biochar, microbial agents and microbial agents-loaded biochar (BCLMA) groups, BCLMA addition led to a higher composting temperature, with increases of 17-62% in humic acid, 25-73% in germination index, and 30-35% in organic matter consumption. And the residual fraction of Cu, Zn, Cr and Cd were increased by 30%, 12%, 22% and 17%, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!