The dynamic control of terahertz (THz) wave transmission on flexible functional materials is a fundamental building block for wearable electronics and sensors in the THz range. However, achieving high-efficiency THz modulation and low insertion loss is a great challenge while maintaining the excellent flexibility and stretchability of the materials. Herein, we report a TiCT MXene/waterborne polyurethane (WPU) membrane prepared by a vacuum-assisted filtration method, which exhibits excellent THz modulation properties across stretching. The hydrophilic TiCT MXene and WPU enable the uniform 3D distribution of TiCT MXene in the WPU matrix. Particularly, the stretchability with the maximum strain of the membranes can reach 200%, accompanied by dynamic tuning of THz transmittance for more than 90% and an insertion loss as low as -4.87 dB. The giant THz modulation continuously decreases with MXene content per unit area, accompanied by a lower density of the MXene interface and diminished THz absorption during stretching. Such a design opens a pathway for achieving flexible THz modulators with a high modulation depth and low insertion loss, which would be used for THz flexible and wearable devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c21031DOI Listing

Publication Analysis

Top Keywords

insertion loss
16
low insertion
12
thz modulation
12
thz
9
tict mxene/waterborne
8
mxene/waterborne polyurethane
8
modulation low
8
tict mxene
8
mxene wpu
8
modulation
5

Similar Publications

In this paper, we propose a novel structure of anisotropic graphene-based hyperbolic metamaterial (AGHMM) sandwiched as a defect between two one-dimensional photonic crystals (PCs) in the terahertz (THz) region. The proposed structure is numerically simulated and analyzed using the transfer matrix method, effective medium theory and three-dimensional finite-difference time-domain. The defect layer of AGHMM consists of graphene sheets separated by subwavelength dielectric spacers.

View Article and Find Full Text PDF

Serine 31 is a phospho-site unique to the histone H3.3 variant; mitotic phospho-Ser31 is restricted to pericentromeric heterochromatin, and disruption of phospho-Ser31 results in chromosome segregation defects and loss of p53-dependant G cell-cycle arrest. Ser31 is proximal to the H3.

View Article and Find Full Text PDF

Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein.

J Am Chem Soc

December 2024

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.

View Article and Find Full Text PDF

Hereditary spastic paraplegias (HSP) are a diverse group of neurodegenerative diseases characterized by lower limb spasticity and weakness. To date, over 80 genes have been associated with HSP, but many families remain without a molecular diagnosis. In this study, linkage analysis and whole-exome sequencing (WES) were performed to identify the causal gene in a HSP family with autosomal recessive inheritance.

View Article and Find Full Text PDF

Background: Although there are many works analyzing the clinical behavior of immediate loading of implants inserted by guided surgery, the literature referring specifically to elderly patients is scarce. The aim of this investigation is to present the clinical outcomes of immediate loading of implants inserted by guided surgery in geriatric patients with edentulous maxilla.

Material And Methods: The clinical data of 20 elderly patients with edentulous jaws are analyzed retrospectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!