Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Computing ancestral ranges via the Dispersion Extinction and Cladogensis (DEC) model of biogeography is characterized by an exponential number of states relative to the number of regions considered. This is because the DEC model requires computing a large matrix exponential, which typically accounts for up to 80% of overall runtime. Therefore, the kinds of biogeographical analyses that can be conducted under the DEC model are limited by the number of regions under consideration. In this work, we present a completely redesigned efficient version of the popular tool Lagrange which is up to 49 times faster with multithreading enabled, and is also 26 times faster when using only one thread. We call this new version Lagrange-NG (Lagrange-Next Generation). The increased computational efficiency allows Lagrange-NG to analyze datasets with a large number of regions in a reasonable amount of time, up to 12 regions in approximately 18 min. We achieve these speedups using a relatively new method of computing the matrix exponential based on Krylov subspaces. In order to validate the correctness of Lagrange-NG, we also introduce a novel metric on range distributions for trees so that researchers can assess the difference between any two range inferences. Finally, Lagrange-NG exhibits substantially higher adherence to coding quality standards. It improves a respective software quality indicator as implemented in the SoftWipe tool from average (5.5; Lagrange) to high (7.8; Lagrange-NG). Lagrange-NG is freely available under GPL2. [Biogeography; Phylogenetics; DEC Model.].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198646 | PMC |
http://dx.doi.org/10.1093/sysbio/syad002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!