Campylobacter species are among the aetiological agents responsible for 400-500 million human diarrhoea cases per annum. The risk of dissemination of antibiotic-resistant Campylobacter species between humans, animals, and the environment is anticipated, given its transmissibility through these sources. The objective of this paper is to present a situation analysis that reports the current patterns and determinants of Campylobacter antibiotic resistance in South Africa. This review applies the One Health (OH) Approach to systematically review and collate the current antibiotic resistance status among Campylobacter spp. in South Africa. The highest level of resistance of Campylobacter in humans is to azithromycin (69.7%), whereas the lowest level of resistance of Campylobacter is to gatifloxacin (8.3%). In animals, high resistance to common antibiotics erythromycin (95.06%), clindamycin (95.68%), doxycycline (87.65%), erythromycin (90%), tetracycline (84.3%), streptomycin (88%), and ampicillin (73%) while 100% resistance of Campylobacter from water samples to tetracycline, imipenem, is recorded. Furthermore, resistance to clarithromycin (95%), azithromycin (92%), clindamycin (84.2%), doxycycline (80%), and ciprofloxacin (77.8%) is reported among Campylobacter spp. from water samples. The genetic similarity results suggest the movement of antibiotic-resistant Campylobacter spp. between humans and the environment. More research on antibiotic resistance among Campylobacter from other sources, outside clinical isolates, is recommended.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wh.2022.146 | DOI Listing |
mSphere
January 2025
Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.
Post-transcriptional gene regulation by non-coding small RNAs (sRNAs) is critical for colonization and survival of enteric pathogens, including the zoonotic pathogen . In this study, we utilized IA3902 (a representative isolate of the sheep abortion clone) and W7 (a highly motile variant of NCTC 11168, a human gastroenteritis strain) to further investigate regulation by sRNA CjNC110. Both motility and autoagglutination ability were confirmed to be phenotypes of conserved regulation by CjNC110.
View Article and Find Full Text PDFMicroorganisms
December 2024
Pediatric Infectious Disease Unit, Barilla Children's Hospital of Parma, 43126 Parma, Italy.
Campylobacteriosis is a leading cause of infectious diarrhea and foodborne illness worldwide. infection is primarily transmitted through the consumption of contaminated food, especially uncooked meat, or untreated water; contact with infected animals or contaminated environments; poultry is the primary reservoir and source of human transmission. The clinical spectrum of / infection can be classified into two distinct categories: gastrointestinal and extraintestinal manifestations.
View Article and Find Full Text PDFPathogens
December 2024
Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland.
The prevalence of antimicrobial-resistant bacteria in meat and meat products is a significant public health challenge, largely driven by the excessive and inappropriate use of antimicrobials in animal husbandry. In Poland, a key meat producer in Europe, antibiotic-resistant pathogens such as spp., spp.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands.
Antimicrobial resistance (AMR) is a global public health threat, with antimicrobial use (AMU) in livestock recognized as a significant driver. This study examines farm-level AMU and AMR as well as the relationship between AMU and AMR on broiler farms in Indonesia. Data were collected from 19 farms in West Java between 2019 and 2021 to examine AMU in depth across four to five successive production cycles.
View Article and Find Full Text PDFAntibiotics (Basel)
November 2024
Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK.
(CJ) is the etiological agent of the world's most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and humans, thereby preserving intestinal homeostasis, is relevant. We have created a synbiotic based on the consortium of 2029 (LC2029), 7247 (LS7247), and a mannan-rich prebiotic (Actigen).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!