Objective: Allergic rhinitis (AR) is primarily regulated by type I hypersensitivity, with Th2 and immunoglobulin E (IgE) playing essential roles. This study aimed to determine whether angiotensin converting enzyme (ACE)2 could participate in the regulation of AR.

Methods: Nasal mucosal tissues of AR patients were collected to determine ACE2 levels. Following AR mouse models were established, ACE2 levels in nasal mucosa were determined. Then the influences of diminazene aceturate (ACE2 agonist) on AR symptoms, pathology, specific antibodies, histamine, and interleukins (ILs) release in vivo were evaluated. Afterward, human nasal mucosa epithelial cells were exposed to IL-13, and the impacts of ACE2 overexpression on the secretion of pro-inflammatory factors in vitro were assessed.

Results: ACE2 levels significantly declined in nasal mucosa both in patients and mouse models (p < .001). Diminazene aceturate treatment elevated the ACE2 level in mice (p < .01), accompanied by reduced frequency of nasal spray and nasal friction, decreased eosinophils and goblet cells (p < .001) according to histopathological staining. Furthermore, lgE, lgG1, histamine, and IL levels in mice were also decreased (p < .05). In vitro experiments revealed that ACE2 overexpression suppressed the secretion of pro-inflammatory factors (p < .001).

Conclusion: Together, ACE2 activation can alleviate the symptoms of AR in mice and inhibit the release of Th2 cytokines. Activating ACE2 is a promising therapeutic approach for AR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846113PMC
http://dx.doi.org/10.1002/iid3.763DOI Listing

Publication Analysis

Top Keywords

ace2 levels
12
nasal mucosa
12
angiotensin converting
8
converting enzyme
8
allergic rhinitis
8
mouse models
8
ace2
6
enzyme activation
4
activation improves
4
improves allergic
4

Similar Publications

Although much has been learned about the entry mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many details of the entry mechanisms of seasonal human coronaviruses (HCoVs) remain less well understood. In the present study, we used 293T cell lines stably expressing angiotensin converting enzyme (ACE2), aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2), which support high-level transduction of lentiviral pseudoviruses bearing spike proteins of seasonal HCoVs, HCoV-NL63, -229E, or -HKU1, respectively, to compare spike processing and virus entry pathways among these viruses. Our results showed that the entry of HCoV-NL63, -229E, and -HKU1 pseudoviruses into cells is sensitive to endosomal acidification inhibitors (chloroquine and NHCl), indicating entry via the endocytosis route.

View Article and Find Full Text PDF

Characterization of SARS-CoV-2 Entry Genes in Skeletal Muscle and Impacts of In Vitro Versus In Vivo Infection.

J Cachexia Sarcopenia Muscle

February 2025

Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.

Background: COVID-19 has been associated with both respiratory (diaphragm) and non-respiratory (limb) muscle atrophy. It is unclear if SARS-CoV-2 infection of skeletal muscle plays a role in these changes. This study sought to: 1) determine if cells comprising skeletal muscle tissue, particularly myofibres, express the molecular components required for SARS-CoV-2 infection; 2) assess the capacity for direct SARS-CoV-2 infection and its impact on atrophy pathway genes in myogenic cells; and 3) in an animal model of COVID-19, examine the relationship between viral infection of skeletal muscle and myofibre atrophy within the diaphragm and limb muscles.

View Article and Find Full Text PDF

DIZE improved obesity and metabolic disturbances in DIO mice. An increase of sperm account and motility, along with improved morphology and increased male fertility was observed after DIZE treatment. Both serum and intratesticular testosterone levels showed an increase.

View Article and Find Full Text PDF

Genetic determinants of COVID-19 severity and mortality: Alu 287 bp polymorphism and , , expression in hospitalized patients.

PeerJ

January 2025

Departamento de genética, ecologia e evolução, Laboratório de biologia integrativa, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Background: The angiotensin-converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) are central human molecules in the SARS-CoV-2 virus-host interaction. Evidence indicates that may influence expression. This study aims to determine whether ACE1, ACE2, and TMPRSS2 mRNA expression levels, along with the ACE1 Alu 287 bp polymorphism (rs4646994), contribute to the severity and mortality of COVID-19.

View Article and Find Full Text PDF

Insight into Covid Associated Mucormycosis: A Prospective Study.

Iran J Otorhinolaryngol

January 2025

Department of Otorhinolaryngology and Head & Neck Surgery, All India Institute of Medical Sciences, New Delhi, India.

Introduction: The notable increase in cases of rhino-orbito-cerebral Mucormycosis during the COVID pandemic is alarming. Both share a common route of entry, the nasal mucosa, leading to speculation about whether similar receptors play a role in both diseases. We aim to compare the expression of ACE2 and TMPRSS2 in the nasal and paranasal sinus tissues among patients with COVID-19-associated Mucormycosis (CAM), COVID-19-negative mucormycosis (CNM), and healthy individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!