Introduction: To investigate the role of the long-chain noncoding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) in the process of angiogenesis in human umbilical vein endothelial cells (HUVECs) and illustrate its potential role in burn sepsis (BS) pathogenesis.

Methods: HUVECs were treated with BS patient serum or healthy control serum. NEAT1 shRNA, miR-495-3p mimics, and miR-495-3p inhibitor were transfected into HUVECs. NEAT1 and miR-495-3 levels in serum or HUVECs were detected using quantitative reverse transcription-polymerase chain reaction. Cell counting kit-8 and flow cytometry assays were used to explore the proliferation and apoptosis of HUVECs. The expression of vascular endothelial growth factor (VEGF) in the supernatant was detected using enzyme-linked immunosorbent assay. Tube formation of HUVECs was also analyzed. Western blot analysis was used to analyze signaling pathway proteins.

Results: In HUVECs stimulated with BS patient serum, NEAT1 expression was increased, while miR-495-3p expression was decreased. In addition, NEAT1 silencing by specific shRNA inhibited cell proliferation, VEGF production, and tube formation under burn patient serum treatment, which decreased the TGFβ1/SMAD signaling pathway activation. Moreover, miR-495-3p minics inhibited angiogenesis and the activation of signaling pathways induced by NEAT1 shRNA. Furthermore, miR-495-3p inhobitor promoted angiogenesis in HUVECs and activated the TGFβ1/SMAD signaling pathway. In patients with BS, NEAT1 expression was significantly increased and miR-495-3p expression was decreased compared to healthy controls, and NEAT1 and miR-495-3p expression was associated with the clinical features of patients.

Conclusions: Our results indicate that lncRNA NEAT1 regulates angiogenesis and activates the TGFβ1/SMAD signaling pathway during the occurrence of BS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841715PMC
http://dx.doi.org/10.1002/iid3.758DOI Listing

Publication Analysis

Top Keywords

signaling pathway
16
patient serum
12
mir-495-3p expression
12
tgfβ1/smad signaling
12
neat1
9
regulates angiogenesis
8
burn sepsis
8
signaling pathways
8
huvecs
8
serum neat1
8

Similar Publications

Purpose: To investigate the therapeutic efficacy of BEZ235, a dual PI3K/mTOR inhibitor, in suppressing pathological neovascularization in an oxygen-induced retinopathy (OIR) mouse model and explore the role of cyclin D1 in endothelial cell cycle regulation.

Methods: Single-cell RNA sequencing was performed to analyze gene expression and cell-cycle alterations in retinal endothelial cells under normoxic and OIR conditions. The effects of BEZ235 on human umbilical vein endothelial cells (HUVECs) and human retinal microvascular endothelial cells (HRMECs) were evaluated by assessing cell viability, cell-cycle progression, proliferation, migration, and tube formation.

View Article and Find Full Text PDF

Pancreatic cancer remains as global health challenge, ranking as the seventh leading cause of cancer-related deaths worldwide with high mortality rates and a low five-year survival rate. Despite advancements in conventional therapies, including surgery, chemotherapy, and radiation, the overall survival rates for pancreatic cancer patients have shown minimal improvement. Consequently, there is an urgent need for alternative therapeutic strategies.

View Article and Find Full Text PDF

Upregulation of the MAP2K4 gene triggers endothelial-mesenchymal transition in COVID-19.

Mol Biol Rep

January 2025

Department of Molecular Biology and Genetics, Faculty of Art and Science, Tokat Gaziosmanpasa University, Tokat, 60200, Türkiye.

Background: SARS-CoV-2 infection is marked by an excessive inflammatory response, leading to elevated production of pro-inflammatory cytokines through activation of intracellular pathways like mitogen-activated protein kinase (MAPK). Viruses can use the MAPK signaling pathway to their advantage, but the relationship of this pathway to the severe SARS-CoV-2 period has not been fully elucidated. MAP2K4 is involved in the MAPK signaling pathway and affects cellular processes such as cell-cell junction, cell proliferation, differentiation and apoptosis.

View Article and Find Full Text PDF

Background: Liver cirrhosis represents a critical stage of chronic liver disease, characterized by progressive liver damage, cellular dysfunction, and disrupted cell-to-cell interactions. Glycosylation, an essential post-translational modification, significantly influences cellular behavior and disease progression. Its role in cirrhosis at the single-cell level remains unclear, despite its importance.

View Article and Find Full Text PDF

Molecular landscape of CD8 T cells in pure red cell aplasia.

Ann Hematol

January 2025

Department of Hematology, Tianjin Medical University General Hospital, No. 154 Anshandao Road, Heping District, Tianjin, 300052, China.

The aberrant function of lymphocytes is considered a significant contributing factor to pure red cell aplasia (PRCA), but the precise mechanism by which T lymphocytes induce erythroid development stagnation remains unclear. In our study, the CD8 T lymphocytes were isolated from bone marrow aspirates of acquired PRCA patients and healthy controls. RNA sequencing (RNA-Seq) was performed to analyze gene expression profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!