Ribosome biogenesis is a process of making ribosomes that is tightly linked with plant growth and development. Here, through a suppressor screen for the smo2 mutant, we found that lack of a ribosomal stress response mediator, ANAC082 partially restored growth defects of the smo2 mutant, indicating SMO2 is required for the repression of nucleolar stress. Consistently, the smo2 knock-out mutant exhibited typical phenotypes characteristic of ribosome biogenesis mutants, such as pointed leaves, aberrant leaf venation, disrupted nucleolar structure, abnormal distribution of rRNA precursors, and enhanced tolerance to aminoglycoside antibiotics that target ribosomes. SMO2 interacted with ROOT INITIATION DEFECTIVE 2 (RID2), a methyltransferase-like protein required for pre-rRNA processing. SMO2 enhanced RID2 solubility in Escherichia coli and the loss of function of SMO2 in plant cells reduced RID2 abundance, which may result in abnormal accumulation of FIBRILLARIN 1 (FIB1) and NOP56, two key nucleolar proteins, in high-molecular-weight protein complex. Taken together, our results characterized a novel plant ribosome biogenesis factor, SMO2 that maintains the abundance of RID2, thereby sustaining ribosome biogenesis during plant organ growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.16121 | DOI Listing |
The integrated stress response (ISR) is a conserved eukaryotic signaling pathway that responds to diverse stress stimuli to restore proteostasis. The strength and speed of ISR activation must be tuned properly to allow protein synthesis while maintaining proteostasis. Here, we describe how genetic perturbations change the dynamics of the ISR in budding yeast.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Dimethyladenosine transferase 1 (DIMT1) is an RNA -dimethyladenosine (mA) methyltransferase. DIMT1's role in pre-rRNA processing and ribosome biogenesis is critical for cell proliferation. Here, we investigated the minimal number of residues in a positively charged cleft on DIMT1 required for cell proliferation.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Department of Studies in Physics, University of Mysore, Mysuru, India.
Sci Rep
December 2024
Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
Heart transplantation remains the ultimate treatment strategy for neonates and children with medically refractory end-stage heart failure and utilization of donors after circulatory death (DCD) can expand th donor pool. We have previously shown that mitochondrial transplantation preserves myocardial function and viability in neonatal swine DCD hearts to levels similar to that observed in donation after brain death (DBD). Herein, we sought to investigate the transcriptomic and proteomic pathways implicated in these phenotypic changes using ex situ perfused swine hearts.
View Article and Find Full Text PDFPhytomedicine
December 2024
Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China. Electronic address:
Background: The dysregulation of ribosome biogenesis has been extensively identified in various cancers, making it emerge as a hallmark of malignant cells. This highlights the potential of targeting ribosome biogenesis as an effective approach for treating cancer patients. Although chemotherapy drugs including doxorubicin and cisplatin often target ribosome biogenesis to induce DNA damage or inhibit tumor cell proliferation, they are associated with significant side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!