Discovery of a Unique Flavonoid Biosynthesis Mechanism in Fungi by Genome Mining.

Angew Chem Int Ed Engl

Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.

Published: March 2023

Flavonoids are important plant natural products with variable structures and bioactivities. All known plant flavonoids are generated under the catalysis of a type III polyketide synthase (PKS) followed by a chalcone isomerase (CHI) and a flavone synthase (FNS). In this study, the biosynthetic gene cluster of chlorflavonin, a fungal flavonoid with acetolactate synthase inhibitory activity, was discovered using a self-resistance-gene-directed strategy. A novel flavonoid biosynthetic pathway in fungi was revealed. A core nonribosomal peptide synthetase-polyketide synthase (NRPS-PKS) is responsible for the generation of the key precursor chalcone. Then, a new type of CHI catalyzes the conversion of a chalcone into a flavanone by a histidine-mediated oxa-Michael addition mechanism. Finally, the desaturation of flavanone to flavone is catalyzed by a new type of FNS, a flavin mononucleotide (FMN)-dependent oxidoreductase.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202215529DOI Listing

Publication Analysis

Top Keywords

discovery unique
4
unique flavonoid
4
flavonoid biosynthesis
4
biosynthesis mechanism
4
mechanism fungi
4
fungi genome
4
genome mining
4
mining flavonoids
4
flavonoids plant
4
plant natural
4

Similar Publications

Stimuli-Responsive Nano Drug Delivery Systems for the Treatment of Neurological Diseases.

Small

January 2025

Molecular Imaging Center, National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.

Nanomaterials with unparalleled physical and chemical attributes have become a cornerstone in the field of nanomedicine delivery. These materials can be engineered into various functionalized nanocarriers, which have become the focus of research. Stimulus-responsive nanodrug delivery systems (SRDDS) stand out as a sophisticated class of nanocarriers that can release drugs in response to environmental cues.

View Article and Find Full Text PDF

A bird's-eye view of the biological mechanism and machine learning prediction approaches for cell-penetrating peptides.

Front Artif Intell

January 2025

Department of Genetic Engineering, Computational Biology Lab, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Chennai, India.

Cell-penetrating peptides (CPPs) are highly effective at passing through eukaryotic membranes with various cargo molecules, like drugs, proteins, nucleic acids, and nanoparticles, without causing significant harm. Creating drug delivery systems with CPP is associated with cancer, genetic disorders, and diabetes due to their unique chemical properties. Wet lab experiments in drug discovery methodologies are time-consuming and expensive.

View Article and Find Full Text PDF

Objective: Machine learning (ML) has enabled healthcare discoveries by facilitating efficient modeling, such as for cancer screening. Unlike clinical trials, real-world data used in ML are often gathered for multiple purposes, leading to bias and missing information for a specific classification task. This challenge is especially pronounced in healthcare because of stringent ethical considerations and resource constraints.

View Article and Find Full Text PDF

Macrocyclic Peptide-Based Dual-Sensor Platform for Linkage-Specific Visualization of Ubiquitin Chain Assembling in Live Cells.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Intracellular monitoring of protein ubiquitination and differentiating polyubiquitin chain topology are crucial for understanding life processes and drug discovery, which is challenged by the high complexity of the ubiquitination process and a lack of molecular tools. Herein, a synthetic dual-sensor platform specific for K48-linked ubiquitin oligomers was tailored for visualization of polyubiquitin chain assembling in live biosystems. This is achieved using macrocyclic peptides as recognition motifs and a tetraphenylethylene derivative as an activatable reporter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!