Herringbone micromixers are a powerful tool for introducing advection into microfluidic systems. While these mixers are typically used for mixing fluids faster than the rate of diffusion, there has been recent interest in using the device to enhance interactions between suspended particles and channel walls. We show how the common approximations applied to herringbone micromixer theory can have a significant impact on results. We show that the inclusion of gravity can greatly alter the interaction probability between suspended particles and channel walls. We also investigate the proposed impedance matching condition and the inclusion of imperfect binding using numerical methods, and investigate transient behaviors using an experimental system. These results indicate that while traditional methods, such as simple streamline analysis, remain powerful tools, it should not be considered predictive in the general case.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873379 | PMC |
http://dx.doi.org/10.1063/5.0134431 | DOI Listing |
Int J Pharm
October 2024
Department of Life and Environmental Sciences, University of Cagliari, Monserrato, CA 09042, Italy. Electronic address:
Microfluidic mixing is recognized as a convenient method to produce liposomes for its scalability and reproducibility. Numerous studies have described the effect of process parameters such as flow rate ratios and total flow rate on size and size distribution of vesicles. In this work, we focused our attention on the effect of flow rate ratios on the encapsulation efficiency of liposomes, as we hypothesized that different amount of residual organic solvent could affect the retention of lipophilic drug molecules within the bilayer.
View Article and Find Full Text PDFMicrosyst Nanoeng
July 2024
Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 320003 Haifa, Israel.
This work presents the development and design of aptasensor employing porous silicon (PSi) Fabry‒Pérot thin films that are suitable for use as optical transducers for the detection of lactoferrin (LF), which is a protein biomarker secreted at elevated levels during gastrointestinal (GI) inflammatory disorders such as inflammatory bowel disease and chronic pancreatitis. To overcome the primary limitation associated with PSi biosensors-namely, their relatively poor sensitivity due to issues related to complex mass transfer phenomena and reaction kinetics-we employed two strategic approaches: First, we sought to optimize the porous nanostructure with respect to factors including layer thickness, pore diameter, and capture probe density. Second, we leveraged convection properties by integrating the resulting biosensor into a 3D-printed microfluidic system that also had one of two different micromixer architectures (i.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
July 2024
Liposomes are spherical vesicles formed from bilayer lipid membranes that are extensively used in targeted drug delivery as nanocarriers to deliver therapeutic reagents to specific tissues and organs in the body. Recently, we have reported using estrone as an endogenous ligand on doxorubicin-encapsulating liposomes to target estrogen receptor (ER)-positive breast cancer cells. Estrone liposomes were synthesized using the thin-film hydration method, which is a long, arduous, and multistep process.
View Article and Find Full Text PDFBiophys Rev (Melville)
September 2023
The importance of drug delivery for disease treatment is supported by a vast literature and increasing ongoing clinical studies. Several categories of nano-based drug delivery systems have been considered in recent years, among which lipid-based nanomedicines, both artificial and cell-derived, remain the most approved. The best artificial systems in terms of biocompatibility and low toxicity are liposomes, as they are composed of phospholipids and cholesterol, the main components of cell membranes.
View Article and Find Full Text PDFLab Chip
January 2024
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA.
Lipid nanoparticles (LNPs) are drug carriers for protecting nucleic acids for cellular delivery. The first mRNA vaccines authorized by the United States Food and Drug Administration are the mRNA-1273 (Moderna) and BNT162b (BioNTech/Pfizer) vaccines against coronavirus disease 2019 (COVID-19). We designed a 3D printed Omnidirectional Sheath-flow Enabled Microfluidics (OSEM) device for producing mRNA-loaded LNPs that closely resemble the Moderna vaccine: we used the same lipid formulations to encapsulate mRNA encoding SARS-CoV-2 spike protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!