The gene is a component of the subcortical maternal effect complex (SCMC). Mutations in the gene, which was the first gene discovered to impact the activation process of the human embryonic genome, have been shown to induce early embryo arrest. A 29-year-old lady with primary infertility underwent fertilization embryo transfer (IVF-ET) for tubal reasons, who had normal hormone levels and ovarian reserve. A Progestin-Primed Ovarian Stimulation (PPOS) protocol of Ovarian stimulation with IVF was performed. The total of Gonadotropin (Gn) stimulation with u-FSH was 2100 IU, which lasted for 10 days. When three follicles measuring less than 18 mm in diameter were seen, r-hCG 250 ug and triptorelin acetate 0.2 mg were injected to trigger oocyte maturation. Nineteen oocytes (including thirteen MII oocytes) were picked up 37 h after the trigger, and seven of these were normal fertilized. Unfortunately, these many embryos were stopped at the 1- or 2-cell stage, hence this infertile patient's IVF treatment won't result in an embryo transfer. Using whole-exome sequencing, a complex heterozygous mutation in was discovered: c. 1247T>C [p.Ile416Thr] in exon 12 of , and c. 2009_2010del [p.Glu670GlyfsTer48] in exon 17 of . We found a complex heterozygous mutation in the gene (c. 1247T>C; c. 2009_2010del) that caused embryos were arrested at the 1- or 2- cell stage. The discovery in this patient adds to the evidence showing the PADI6 gene mutation causes early embryo arrest in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871383 | PMC |
http://dx.doi.org/10.3389/fgene.2022.1104085 | DOI Listing |
Pediatr Nephrol
January 2025
Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
Background: Coenzyme Q10 (CoQ10) nephropathy is a well-known cause of hereditary steroid-resistant nephrotic syndrome, primarily impacting podocytes. This study aimed to elucidate variations in individual cell-level gene expression in CoQ10 nephropathy using single-cell transcriptomics.
Methods: We conducted single-cell sequencing of a kidney biopsy specimen from a 5-year-old boy diagnosed with a CoQ10 nephropathy caused by a compound heterozygous COQ2 mutation complicated with immune complex-mediated glomerulonephritis.
Unlabelled: is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin.
View Article and Find Full Text PDFMol Genet Metab Rep
March 2025
The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, 6997801 Tel Aviv, Israel.
Dihydrolipoamide dehydrogenase (DLD) deficiency is an autosomal recessive disorder characterized by a functional disruption in several critical mitochondrial enzyme complexes, including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase. Despite DLD's pivotal role in cellular energy metabolism, detailed molecular and metabolic consequences of DLD deficiency (DLDD) remain poorly understood. This study represents the first in-depth multi-omics analysis, specifically metabolomic and transcriptomic, of fibroblasts derived from a DLD-deficient patient compound heterozygous for a common Ashkenazi Jewish variant (c.
View Article and Find Full Text PDFIntroduction: Pseudohypoparathyroidism 1A (PHP1A) is the best-known representative of inactivating PTH/PTHrP signaling disorders (iPPSD). The associated phenotype develops over time and often includes hormonal resistances, short stature and osteoma cutis. More complex and very early manifestations have also been reported.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA. Electronic address:
Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!