The maternal-fetal interface is an essential environment for embryonic growth and development, and a successful pregnancy depends on the dynamic balance of the microenvironment at the maternal-fetal interface. Single-cell sequencing, which unlike bulk sequencing that provides averaged data, is a robust method for interpreting the cellular and molecular landscape at single-cell resolution. With the support of single-cell sequencing, the issue of maternal-fetal interface heterogeneity during pregnancy has been more deeply elaborated and understood, which is important for a deeper understanding of physiological and pathological pregnancy. In this paper, we analyze the recent studies of single-cell transcriptomics in the maternal-fetal interface, and provide new directions for understanding and treating various pathological pregnancies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871254 | PMC |
http://dx.doi.org/10.3389/fcell.2022.1079961 | DOI Listing |
J Ethnopharmacol
January 2025
College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang, 050091, China. Electronic address:
Ethnopharmacological Relevance: The classic TCM prescription, Shoutai Wan (STW), is extensively used in clinical settings to manage threatened miscarriage and Recurrent spontaneous abortion (RSA). The complexity of pregnancy physiology, coupled with diverse etiologies, and the specificity of energy metabolism for normal embryo attachment and development,pose challenges to clinical diagnosis and treatment. The specific molecular mechanisms of how STW regulates these biological processes and contributes to the treatment of RSA remain to be elucidated.
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria.
Microchimerism is defined as the presence of a small population of genetically distinct cells within a host that is derived from another individual. Throughout pregnancy, maternal and fetal cells are known to traffic across the feto-maternal interface and result in maternal and fetal microchimerism, respectively. However, the routes of cell transfer, the molecular signaling as well as the timing in which trafficking takes place are still not completely understood.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China. Electronic address:
Bone morphogenetic protein 4 (BMP4) is widely involved in the regulation of cell proliferation and differentiation, but its role in Recurrent Spontaneous Abortion (RSA) remains unclear. RSA is a disease that affects roughly 1-2% of partner pairs, but its pathogenesis is still unclear. In recent years, many studies have focused on the role of decidual macrophages in RSA.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary.
Pregnancy involves significant immunological changes to support fetal development while protecting the mother from infections. A growing body of evidence supports the importance of immune checkpoint pathways, especially at the maternal-fetal interface, although limited information is available about the peripheral expression of these molecules by CD8+ and CD8- NK cell subsets during the trimesters of pregnancy. Understanding the dynamics of these immune cells and their checkpoint pathways is crucial for elucidating their roles in pregnancy maintenance and potential complications.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada.
Prenatal maternal stress (PNMS) determines lifetime mental and physical health. Here, we show in rats that PNMS has consequences for placental function and fetal brain development across four generations (F0-F3). Using a systems biology approach, comprehensive DNA methylation (DNAm), miRNA, and mRNA profiling revealed a moderate impact of PNMS in the F1 generation, but drastic changes in F2 and F3 generations, suggesting compounding effects of PNMS with each successive generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!