Introduction: Regression and classification are two of the most fundamental and significant areas of machine learning.

Methods: In this paper, a radial basis function neural network (RBFNN) based on an improved black widow optimization algorithm (IBWO) has been developed, which is called the IBWO-RBF model. In order to enhance the generalization ability of the IBWO-RBF neural network, the algorithm is designed with nonlinear time-varying inertia weight.

Discussion: Several classification and regression problems are utilized to verify the performance of the IBWO-RBF model. In the first stage, the proposed model is applied to UCI dataset classification, nonlinear function approximation, and nonlinear system identification; in the second stage, the model solves the practical problem of power load prediction.

Results: Compared with other existing models, the experiments show that the proposed IBWO-RBF model achieves both accuracy and parsimony in various classification and regression problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871759PMC
http://dx.doi.org/10.3389/fninf.2022.1103295DOI Listing

Publication Analysis

Top Keywords

neural network
12
classification regression
12
regression problems
12
ibwo-rbf model
12
based improved
8
improved black
8
black widow
8
widow optimization
8
optimization algorithm
8
classification
5

Similar Publications

Background: Mitochondrial genes are involved in tumor metabolism in ovarian cancer (OC) and affect immune cell infiltration and treatment responses.

Aim: To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.

Methods: Prognosis, immunotherapy efficacy, and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.

View Article and Find Full Text PDF

Pulse approach: a physics-guided machine learning model for thermal analysis in laser-based powder bed fusion of metals.

Prog Addit Manuf

July 2024

Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.

Fast and accurate representation of heat transfer in laser powder-bed fusion of metals (PBF-LB/M) is essential for thermo-mechanical analyses. As an example, it benefits the detection of thermal hotspots at the design stage. While traditional physics-based numerical approaches such as the finite element (FE) method are applicable to a wide variety of problems, they are computationally too expensive for PBF-LB/M due to the space- and time-discretization requirements.

View Article and Find Full Text PDF

Neural Correlates of Irritability and Potential Moderating Effects of Inhibitory Control.

Biol Psychiatry Glob Open Sci

March 2025

Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York.

Background: Irritability affects up to 20% of youth and is a primary reason for referral to pediatric mental health clinics. Irritability is thought to be associated with disruptions in processing of reward, threat, and cognitive control; however, empirical study of these associations at both the behavioral and neural level have yielded equivocal findings that may be driven by small sample sizes and differences in study design. Associations between irritability and brain connectivity between cognitive control and reward- or threat-processing circuits remain understudied.

View Article and Find Full Text PDF

Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS), bulbar involvement significantly impacts psychosocial, emotional, and physical health. A validated objective marker is however lacking to characterize and phenotype bulbar involvement, positing a major barrier to early detection, progress monitoring, and tailored care. This study aimed to bridge this gap by constructing a multiplex functional mandibular muscle network to provide a novel objective measurement tool of bulbar involvement.

View Article and Find Full Text PDF

Extracting Thin Film Structures of Energy Materials Using Transformers.

ACS Phys Chem Au

January 2025

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Neutron-Transformer Reflectometry Advanced Computation Engine (), a neural network model using a transformer architecture, is introduced for neutron reflectometry data analysis. It offers fast, accurate initial parameter estimations and efficient refinements, improving efficiency and precision for real-time data analysis of lithium-mediated nitrogen reduction for electrochemical ammonia synthesis, with relevance to other chemical transformations and batteries. Despite limitations in generalizing across systems, it shows promises for the use of transformers as the basis for models that could accelerate traditional approaches to modeling reflectometry data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!