The bottleneck of large-scale implementation of electrocatalytic water-splitting technology lies in lacking inexpensive, efficient, and durable catalysts to accelerate the sluggish oxygen evolution reaction kinetics. Owing to more metallic features, transition metal telluride (TMT) with good electronic conductivity holds promising potential as an ideal type of electrocatalysts for oxygen evolution reaction (OER), whereas most TMTs reported up to now still show unsatisfactory OER performance that is far below corresponding sulfide and selenide counterparts. Here, the activation and stabilization of cobalt telluride (CoTe) nanoarrays toward OER through dual integration of sulfur (S) doping and surface oxidization is reported. The as-synthesized CoO@S-CoTe catalyst exhibits a low overpotential of only 246 mV at 10 mA cm and a long-term stability of more than 36 h, outperforming commercial RuO and other reported telluride-based OER catalysts. The combined experimental and theoretical results reveal that the enhanced OER performance stems from increased active sites exposure, improved charge transfer ability, and optimized electronic state. This work will provide a valuable guidance to release the catalytic potential of telluride-based OER catalysts via interface modulating engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037960PMC
http://dx.doi.org/10.1002/advs.202206204DOI Listing

Publication Analysis

Top Keywords

oxygen evolution
12
evolution reaction
12
oer performance
8
telluride-based oer
8
oer catalysts
8
oer
6
dual integrating
4
oxygen
4
integrating oxygen
4
oxygen sulphur
4

Similar Publications

Cell-autonomous adaptation: an overlooked avenue of adaptation in human evolution.

Trends Genet

December 2024

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel. Electronic address:

Adaptation to environmental conditions occurs over diverse evolutionary timescales. In multi-cellular organisms, adaptive traits are often studied in tissues/organs relevant to the environmental challenge. We argue for the importance of an underappreciated layer of evolutionary adaptation manifesting at the cellular level.

View Article and Find Full Text PDF

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.

View Article and Find Full Text PDF

The high entropy alloy (HEA) possesses distinctive thermal stability and electronic characteristics, which exhibits substantial potential for diverse applications in electrocatalytic reactions. However, accurately controlling the size of HEA still remains a challenge, especially for the ultrasmall HEA nanoparticles. Herein, we firstly calculate and illustrate the size impact on the electronic structure of HEA and the adsorption energies of crucial intermediates in typical electrocatalytic reactions, such as the hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), CO2 electroreduction (CO2RR) and NO3- electroreduction (NO3RR).

View Article and Find Full Text PDF

Herein, we first report a photocatalytic OCM using CO2 as a soft oxidant for C2H6 production under mild conditions, where an efficient photocatalyst with unique interface sites is constructed to facilitate CO2 adsorption and activation, while concurrently boosting CH4 dissociation. As a prototype, the Au quantum dots anchored on oxygen-deficient TiO2 nanosheets are fabricated, where the Au-Vo-Ti interface sites for CO2 adsorption and activation are collectively disclosed by in situ Kelvin probe force microscopy, quasi in situ X-ray photoelectron spectroscopy and theoretical calculations. Compared with single metal site, the Au-Vo-Ti interface sites exhibit the lower CO2 adsorption energy and decrease the energy barrier of the *CO2 hydrogenation step from 1.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!