Chemical diversification of hybrid organic-inorganic glasses remains limited, especially compared to traditional oxide glasses, for which property tuning is possible through addition of weakly bonded modifier cations. In this work, it is shown that water can depolymerize polyhedra with labile metal-ligand bonds in a cobalt-based coordination network, yielding a series of nonstoichiometric glasses. Calorimetric, spectroscopic, and simulation studies demonstrate that the added water molecules promote the breakage of network bonds and coordination number changes, leading to lower melting and glass transition temperatures. These structural changes modify the physical and chemical properties of the melt-quenched glass, with strong parallels to the "modifier" concept in oxides. It is shown that this approach also applies to other transition metal-based coordination networks, and it will thus enable diversification of hybrid glass chemistry, including nonstoichiometric glass compositions, tuning of properties, and a significant rise in the number of glass-forming hybrid systems by allowing them to melt before thermal decomposition.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202205988DOI Listing

Publication Analysis

Top Keywords

coordination network
8
diversification hybrid
8
glass
5
water modifier
4
hybrid
4
modifier hybrid
4
coordination
4
hybrid coordination
4
network glass
4
glass chemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!