The organization of aluminium atoms in zeolites affects their catalytic properties. Here we demonstrate that the aluminium distribution is a key parameter controlling the reaction pathway of acid catalysed reactions over ZSM-5 zeolites. We study ethanol transformation over two ZSM-5 samples with similar Si/Al ratios of ~15, and with aluminium atoms located mainly at the channel intersections but differently distributed in the framework. One of the samples contains mostly isolated aluminium atoms while the other has a large fraction of two aluminium atoms located in one ring. The FT-IR time-resolved operando study, supported by catalytic results, reveals that the reaction pathway in ethanol transformation over ZSM-5 is controlled by the proximity of aluminium atoms in the framework. ZSM-5 containing mostly isolated Al atoms transforms ethanol in the associative pathway, and conversely ZSM-5 containing a dominating fraction of two aluminium atoms in one ring transforms ethanol in the dissociative pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814039 | PMC |
http://dx.doi.org/10.1038/s42004-020-0268-3 | DOI Listing |
J Chem Phys
January 2025
Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
Despite the conventional view of liquid aluminum (l-Al) as a simple metal governed by the free-electron model, it exhibits unique bonding characteristics. This study uncovers a gradual transition from free electron to electride behavior in l-Al at high pressure and temperature, forming a type of two-component liquid where atomic and electride states coexist. The proportion of electride increases with pressure and temperature until reaching saturation, leading to notable changes in the pair-correlation function and coordination number of l-Al at saturation pressure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China.
The Ni-rich LiNiCoMnO cathode (NCM, ≥ 0.6) suffers rapid capacity decay due to serious surface degradations from the corrosion of the electrolyte. The processes of the HO- and O-based AlO atomic layer deposition (ALD) on the single-crystal LiNiCoMnO (NCM83) are investigated by measurements to understand the mechanism of their different impacts on the electrochemical performance of NCM83.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Electrical and Photonics Engineering, Technical University of Denmark, Roskilde 4000, Denmark.
This study examines the effect of ultrathin aluminum oxide (AlO) passivation layer on the performance of the kesterite CuZnSnS (CZTS) solar cells. The AlO layer was applied at the back CZTS/Mo interface using atomic layer deposition (ALD). Our findings indicate that the interface passivation with AlO can significantly enhance the adhesion of CZTS to Mo, preventing delamination during annealing.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Aalto University, Department of Electronics and Nanoengineering, Espoo, Finland.
Even though efficient near-infrared (NIR) detection is critical for numerous applications, state-of-the-art NIR detectors either suffer from limited capability of detecting incoming photons, i.e., have poor spectral responsivity, or are made of expensive group III-V non-CMOS compatible materials.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pediatric Dentistry, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic.
This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!