The organization of aluminium atoms in zeolites affects their catalytic properties. Here we demonstrate that the aluminium distribution is a key parameter controlling the reaction pathway of acid catalysed reactions over ZSM-5 zeolites. We study ethanol transformation over two ZSM-5 samples with similar Si/Al ratios of ~15, and with aluminium atoms located mainly at the channel intersections but differently distributed in the framework. One of the samples contains mostly isolated aluminium atoms while the other has a large fraction of two aluminium atoms located in one ring. The FT-IR time-resolved operando study, supported by catalytic results, reveals that the reaction pathway in ethanol transformation over ZSM-5 is controlled by the proximity of aluminium atoms in the framework. ZSM-5 containing mostly isolated Al atoms transforms ethanol in the associative pathway, and conversely ZSM-5 containing a dominating fraction of two aluminium atoms in one ring transforms ethanol in the dissociative pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814039PMC
http://dx.doi.org/10.1038/s42004-020-0268-3DOI Listing

Publication Analysis

Top Keywords

aluminium atoms
28
reaction pathway
12
ethanol transformation
12
proximity aluminium
8
atoms
8
pathway ethanol
8
transformation zsm-5
8
atoms located
8
fraction aluminium
8
aluminium
7

Similar Publications

Electride transition in liquid aluminum under high pressure and high temperature.

J Chem Phys

January 2025

Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China.

Despite the conventional view of liquid aluminum (l-Al) as a simple metal governed by the free-electron model, it exhibits unique bonding characteristics. This study uncovers a gradual transition from free electron to electride behavior in l-Al at high pressure and temperature, forming a type of two-component liquid where atomic and electride states coexist. The proportion of electride increases with pressure and temperature until reaching saturation, leading to notable changes in the pair-correlation function and coordination number of l-Al at saturation pressure.

View Article and Find Full Text PDF

Subnano AlO Coatings for Kinetics and Stability Optimization of LiNiCoMnO via O-Based Atomic Layer Deposition.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China.

The Ni-rich LiNiCoMnO cathode (NCM, ≥ 0.6) suffers rapid capacity decay due to serious surface degradations from the corrosion of the electrolyte. The processes of the HO- and O-based AlO atomic layer deposition (ALD) on the single-crystal LiNiCoMnO (NCM83) are investigated by measurements to understand the mechanism of their different impacts on the electrochemical performance of NCM83.

View Article and Find Full Text PDF

This study examines the effect of ultrathin aluminum oxide (AlO) passivation layer on the performance of the kesterite CuZnSnS (CZTS) solar cells. The AlO layer was applied at the back CZTS/Mo interface using atomic layer deposition (ALD). Our findings indicate that the interface passivation with AlO can significantly enhance the adhesion of CZTS to Mo, preventing delamination during annealing.

View Article and Find Full Text PDF

Even though efficient near-infrared (NIR) detection is critical for numerous applications, state-of-the-art NIR detectors either suffer from limited capability of detecting incoming photons, i.e., have poor spectral responsivity, or are made of expensive group III-V non-CMOS compatible materials.

View Article and Find Full Text PDF

This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!