The case of palladium(II) ions in molecular polyoxopalladates highlights the importance of accounting not only for nearest neighbour atoms or ions in order to understand, model or predict magnetic characteristics. Here, using site-specific soft X-ray magnetic circular dichroism (XMCD), the effects of different bond lengths, delocalization of 4d electrons, and 4d spin-orbit coupling on the electronic and magnetic properties are investigated and three different states identified: Conventional diamagnetism in a square-planar O coordination environment, paramagnetism caused by four additional out-of-plane oxygen anions, and an unusual diamagnetic state in the diamagnetic/paramagnetic crossover region modified by significant mixing of states and facilitated by the substantial 4d spin-orbit coupling. The two diamagnetic states can be distinguished by characteristic XMCD fine structures, thereby overcoming the common limitation of XMCD to ferro-/ferrimagnetic and paramagnetic materials in external magnetic fields. The qualitative interpretation of the results is corroborated by simulations based on charge transfer multiplet calculations and density functional theory results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814631PMC
http://dx.doi.org/10.1038/s42004-020-0327-9DOI Listing

Publication Analysis

Top Keywords

soft x-ray
8
x-ray magnetic
8
magnetic circular
8
circular dichroism
8
spin-orbit coupling
8
magnetic
5
intramolecular crossover
4
crossover unconventional
4
unconventional diamagnetism
4
diamagnetism paramagnetism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!