Generally, the interface friction on solid surfaces is regarded as consistent with wetting behaviors, characterized by the contact angles. Here using molecular dynamics simulations, we find that even a small charge difference (≤0.36 e) causes a change in the friction coefficient of over an order of magnitude on two-dimensional material and lipid surfaces, despite similar contact angles. This large difference is confirmed by experimentally measuring interfacial friction of graphite and MoS contacting on water, using atomic force microscopy. The large variation in the friction coefficient is attributed to the different fluctuations of localized potential energy under inhomogeneous charge distribution. Our results help to understand the dynamics of two-dimensional materials and biomolecules, generally formed by atoms with small charge, including nanomaterials, such as nitrogen-doped graphene, hydrogen-terminated graphene, or MoS, and molecular transport through cell membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814279 | PMC |
http://dx.doi.org/10.1038/s42004-020-0271-8 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China. Electronic address:
In this work, Pleurotus eryngii protein-polysaccharide conjugates (PE-PPCs) were used as the only stabilizer for the preparation of high internal phase emulsions (HIPEs). PE-PPCs presented spherical particles in solution, and their three-phase contact angle had a strong correlation with pH values, and the angle at pH 10.0 was almost 90°, showing the most balanced hydrophilicity and hydrophobicity.
View Article and Find Full Text PDFHeliyon
December 2024
Ingeniería Electroquímica y Corrosión, Instituto Unversitario de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, C/Camino de Vera s/n, 46022, Valencia, Spain.
In this research work, four distinct WO electrodes were synthesized and coated with three different polymers, known as polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) in poly(4-styrenesulfonate) (PEDOT:PSS) and polyaniline (PANi), using electropolymerization techniques. The morphological features of the samples were thoroughly characterized through Field Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) analyses. Additionally, contact angle measurements and electrochemical characterizations were used to verify the performance of each electrode, aiding in the prediction of their suitability for energy storage applications in lithium-ion batteries.
View Article and Find Full Text PDFRSC Adv
January 2025
Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences Zhanjiang 524001 P. R. China
Addressing the environmental challenges posed by oil spills and industrial wastewater is critical for sustainable development. Graphene aerogels demonstrate significant potential as highly efficient adsorbents due to their high specific surface area, excellent structural tunability and outstanding chemical stability. Among available fabrication methods, the hydrothermal self-assembly technique stands out for its low cost, high tunability and good scalability.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
Green, efficient treatment of crude oil spills and oil pollutants is a global challenge, with adsorption technology favored for its efficiency and low environmental impact. The development of an environmentally friendly adsorbent with high hydrophobicity, excellent adsorption performance, and degradability is crucial to overcoming the limitations of petroleum-based adsorbents. Here, a lignin-based polyurethane foam (LPUF) with superhydrophobic and photothermal oil-absorbing properties was fabricated by incorporating octadecyltrimethoxysilane into the foam system.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
Biodegradable food packaging has gained significant attention owing to environmental concerns. Chitosan (CS), a natural polysaccharide, is popular in packaging films, however, its high hydrophilicity, brittleness, and low mechanical strength limit its use. To improve CS film performance, kafirin (Kaf), glycerol (GE), and tannic acid (TA) were added to create biocomposite films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!