Transient domains of ordered water induced by divalent ions lead to lipid membrane curvature fluctuations.

Commun Chem

Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.

Published: February 2020

Cell membranes are composed of a hydrated lipid bilayer that is molecularly complex and diverse, and the link between molecular hydration structure and membrane macroscopic properties is not well understood, due to a lack of technology that can probe and relate molecular level hydration information to micro- and macroscopic properties. Here, we demonstrate a direct link between lipid hydration structure and macroscopic dynamic curvature fluctuations. Using high-throughput wide-field second harmonic (SH) microscopy, we observe the formation of transient domains of ordered water at the interface of freestanding lipid membranes. These domains are induced by the binding of divalent ions and their structure is ion specific. Using nonlinear optical theory, we convert the spatiotemporal SH intensity into maps of membrane potential, surface charge density, and binding free energy. Using an electromechanical theory of membrane bending, we show that transient electric field gradients across the membrane induce spatiotemporal membrane curvature fluctuations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814626PMC
http://dx.doi.org/10.1038/s42004-020-0263-8DOI Listing

Publication Analysis

Top Keywords

curvature fluctuations
12
transient domains
8
domains ordered
8
ordered water
8
divalent ions
8
membrane curvature
8
hydration structure
8
macroscopic properties
8
membrane
6
water induced
4

Similar Publications

A Hybrid Harmonic Curve Model for Multi-Streamer Hydrophone Positioning in Seismic Exploration.

Sensors (Basel)

December 2024

Geophysical Division of China Oilfield Services Ltd., Tianjin 300451, China.

Towed streamer positioning is a vital and essential stage in marine seismic exploration, and accurate hydrophone coordinates exert a direct and significant influence on the quality and reliability of seismic imaging. Current methods predominantly rely on analytical polynomial models for towed streamer positioning; however, these models often produce significant errors when fitting to streamers with high curvature, particularly during turning scenarios. To address this limitation, this study introduces a novel multi-streamer analytical positioning method that uses a hybrid harmonic function to model the three-dimensional coordinates of streamers.

View Article and Find Full Text PDF

Kirigami Design Smart Contact Lens for Highly Sensitive Eyelid Pressure Measurement.

ACS Sens

December 2024

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Eyelid pressure is a crucial biomechanical parameter for ocular health and refractive status, yet measuring it poses challenges related to flexibility, sensitivity, and regional specificity. This study introduces a novel smart contact lens that incorporates kirigami designs and an iontronic capacitive sensing array to enhance flexibility and conformability. The unique structural composition of this device allows for precise and simultaneous monitoring of eyelid pressure in multiple regions with a high sensitivity and seamlessly fit across corneal curvatures.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes how a boundary between a passive fluid and an active fluid made of microtubules behaves, especially under turbulence-like conditions.
  • It finds that strong active flows cause the boundary to have pronounced asymmetries and local vortices, which disrupts spatial symmetry and leads to significant fluctuations at the interface.
  • As the activity level increases, the interface deforms more dramatically, eventually folding in on itself and creating a foam-like structure with passive droplets embedded within the active fluid.
View Article and Find Full Text PDF

We consider first order cosmological phase transitions (PTs) happening at late times below standard model temperatures T_{PT}≲GeV. The inherently stochastic nature of bubble nucleation and the finite number of bubbles associated with a late-time PT lead to superhorizon fluctuations in the PT completion time. We compute how such fluctuations eventually source curvature fluctuations with universal properties, independent of the microphysics of the PT dynamics.

View Article and Find Full Text PDF

Enhancing fruit SSC detection accuracy via a light attenuation theory-based correction method to mitigate measurement orientation variability.

Food Res Int

November 2024

College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, PR China; The National Key Laboratory of Agricultural Equipment Technology, Beijing 100083, PR China. Electronic address:

Nondestructive online detection and sorting for fruit quality has gradually attracted attention in the global agro-product industry. However, the detection accuracy is influenced by many factors, such as fruit orientation, fruit shape, and environmental fluctuations. This study aimed to explore the impact of measurement orientation variation on spectra and soluble solids content (SSC) detection in apples and propose a correction method to mitigate the effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!