Wet carbonate-promoted radical arylation of vinyl pinacolboronates with diaryliodonium salts yields substituted olefins.

Commun Chem

Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, and the Graduate School at Shenzhen, Tsinghua University, 100084, Beijing, China.

Published: July 2020

Since the landmark work of Heck, Negishi and Suzuki on Pd-catalyzed crossing coupling reactions, innovative discovery of new reactions forming C-C bonds and constructing functional olefins via nonmetal catalysts remains an imperative area in organic chemistry. Herein, we report a transition-metal-free arylation method of vinyl pinacolboronates with diaryliodonium salts to form C(sp)-C(sp) bond and provide trans-arylvinylboronates. The resulting vinylboronates can further react with the remaining aryl iodides (generated from diaryliodonium salts) via Suzuki coupling to afford functional olefins, offering an efficient use of aryliodonium salts. Computational mechanistic studies suggest radical-pair pathway of the diaryliodonium salts promoted by the multi-functional wet carbonate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814134PMC
http://dx.doi.org/10.1038/s42004-020-00343-8DOI Listing

Publication Analysis

Top Keywords

diaryliodonium salts
16
vinyl pinacolboronates
8
pinacolboronates diaryliodonium
8
functional olefins
8
salts
5
wet carbonate-promoted
4
carbonate-promoted radical
4
radical arylation
4
arylation vinyl
4
diaryliodonium
4

Similar Publications

Aims: Organic thiocyanates are important pharmaceutical intermediates. This study aimed to develop a selective and efficient approach for synthesizing organic thiocyanates.

Methods: Under mild reaction conditions, an array of alkenes, KSCN, and diaryliodonium salts are considered good substrates, providing various aryl-substituted alkylthiocyanates with modest to excellent yield.

View Article and Find Full Text PDF

Photoinduced Vicinal Difunctionalization of Diaryliodonium Salts To Access Bis(tetraphenylphosphonium) Salts.

Org Lett

January 2025

Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.

Vicinal bis(tetraarylphosphonium) salts have scarcely been reported in the literature. In this study, we demonstrate that visible-light-induced difunctionalization of -trifluoromethylsulfonylated diaryliodonium salts conveniently furnishes bis(phosphonium) salts without additional catalysts or photoinitiators. The methodology establishes a practical platform for the preparation of bis(phosphonium) salts using readily available tertiary phosphines.

View Article and Find Full Text PDF

We have developed transition-metal-free synthetic methodologies for dibenzoxazepinones utilizing salicylamides as starting materials and employing two distinct types of successive hypervalent iodine-mediated arylocyclizations. This synthetic protocol encompasses selective phenol -arylation of salicylamides with diaryliodonium salts, followed by electrophilic aromatic amination utilizing chemically or electronically generated hypervalent iodine reagents in the second stage of the process.

View Article and Find Full Text PDF

-succinimidyl-[F]fluorobenzoate ([F]SFB) is commonly prepared through a three-step procedure starting from [F]fluoride ion. A number of methods for the single-step radiosynthesis of [F]SFB have been introduced recently, including the radiofluorination of diaryliodonium salts and the Cu-mediated F-fluorination of pinacol aryl boronates and aryl tributyl stannanes, but they still have the drawbacks of lengthy product purification procedures. In the present work, two approaches for the direct labeling of [F]SFB from diaryliodonium (DAI) salt () and pinacol aryl boronate () are evaluated, with a major focus on developing a fast and simple SPE-based purification procedure.

View Article and Find Full Text PDF

Asymmetric S-Arylation of Sulfenamides to Access Axially Chiral Sulfilimines Enabled by Anionic Stereogenic-at-Cobalt(III) Complexes.

Angew Chem Int Ed Engl

December 2024

Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China.

An efficient enantioselective coupling reaction between sulfenamides and cyclic diaryliodonium salts is established via adaptive Cu/anionic stereogenic-at-Co(III) complex combined catalysis, precisely synthesizing a broad range of axially chiral sulfilimines with excellent enantioselectivities, diastereoselectivities, regioselectivities, and chemoselectivities (67 examples under same conditions, up to 98 % ee). The following thermodynamically controlled pyramidal inversion enables efficient stereodivegent synthesis of all four stereoisomers. Mechanistic studies suggest that anionic stereogenic-at-cobalt(III) complexes serve as counteranions of diaryliodonium and anionic ligand of Cu(I) catalyst simultaneously, which could be regarded as an explanation for outstanding selectivities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!