The success of the lead halide perovskites in diverse optoelectronics has motivated considerable interest in their fundamental photocarrier dynamics. Here we report the discovery of photocarrier-induced persistent structural polarization and local ferroelectricity in lead halide perovskites. Photoconductance studies of thin-film single-crystal CsPbBr at 10 K reveal long-lasting persistent photoconductance with an ultralong photocarrier lifetime beyond 10 s. X-ray diffraction studies reveal that photocarrier-induced structural polarization is present up to a critical freezing temperature. Photocapacitance studies at cryogenic temperatures further demonstrate a systematic local phase transition from linear dielectric to paraelectric and relaxor ferroelectric under increasing illumination. Our theoretical investigations highlight the critical role of photocarrier-phonon coupling and large polaron formation in driving the local relaxor ferroelectric phase transition. Our findings show that this photocarrier-induced persistent structural polarization enables the formation of ferroelectric nanodomains at low temperature, which suppress carrier recombination and offer the possibility of exploring intriguing carrier-phonon interplay and the rich polaron photophysics.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-022-01306-xDOI Listing

Publication Analysis

Top Keywords

structural polarization
16
photocarrier-induced persistent
12
persistent structural
12
lead halide
12
halide perovskites
12
phase transition
8
relaxor ferroelectric
8
photocarrier-induced
4
structural
4
polarization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!