A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Packing-induced selectivity switching in molecular nanoparticle photocatalysts for hydrogen and hydrogen peroxide production. | LitMetric

Molecular packing controls optoelectronic properties in organic molecular nanomaterials. Here we report a donor-acceptor organic molecule (2,6-bis(4-cyanophenyl)-4-(9-phenyl-9H-carbazol-3-yl)pyridine-3,5-dicarbonitrile) that exhibits two aggregate states in aqueous dispersions: amorphous nanospheres and ordered nanofibres with π-π molecular stacking. The nanofibres promote sacrificial photocatalytic H production (31.85 mmol g h) while the nanospheres produce hydrogen peroxide (HO) (3.20 mmol g h in the presence of O). This is the first example of an organic photocatalyst that can be directed to produce these two different solar fuels simply by changing the molecular packing. These different packings affect energy band levels, the extent of excited state delocalization, the excited state dynamics, charge transfer to O and the light absorption profile. We use a combination of structural and photophysical measurements to understand how this influences photocatalytic selectivity. This illustrates the potential to achieve multiple photocatalytic functionalities with a single organic molecule by engineering nanomorphology and solid-state packing.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-022-01289-9DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
8
molecular packing
8
organic molecule
8
excited state
8
molecular
5
packing-induced selectivity
4
selectivity switching
4
switching molecular
4
molecular nanoparticle
4
nanoparticle photocatalysts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!