Frequency-domain analysis of transient visual evoked potentials in schizophrenia.

Doc Ophthalmol

Ferkauf Graduate School of Psychology, Yeshiva University, 1165 Morris Park Ave., Bronx, NY, 10461, USA.

Published: June 2023

Purpose: Frequency-domain measures were applied to characterize neural deficits in individuals with schizophrenia using transient visual evoked potentials (tVEP). These measures were compared with conventional time-domain measures to elucidate underlying neurophysiological mechanisms and examine the value of frequency analysis.

Methods: Four frequency bands of activity identified in previous work were explored with respect to magnitude (spectral power), timing (phase), a combined measure, magnitude-squared coherence (MSC), and compared to amplitudes and times of prominent deflections in the response.

Results: Band 2 power/MSC (14-28 Hz) captured the major deflections in the waveform and its power predicted N75-P100 amplitude for patients and controls. Band 3 power/MSC (30-40 Hz) correlated highly with the earliest deflection (P60-N75), reflecting input to primary visual cortex (V1) and produced the largest magnitude effect. Phase of the 24th harmonic component predicted P100 peak time for patients and controls and yielded the largest group difference. Cluster analyses including time- and frequency-domain measures identified subgroups of patients with differential neurophysiological effects. A small but significant difference in visual acuity was found between groups that appears to be neurally based: Acuity (range 0.63-1.6) was not correlated with any tVEP measures in controls nor with input timing to V1 (P60 peak time) in patients, but was correlated with later tVEP measures in patients. All but two of the patients were on antipsychotic medication: Medication level (chlorpromazine equivalents) was correlated negatively with tVEP time measures and positively with certain magnitude measures yielding responses similar to controls at high levels.

Conclusions: Overall, frequency-domain measures were shown to be objective and recommended as an alternative to conventional, subjective time-domain measures for analyzing tVEPs and in distinguishing between groups (patients vs. controls and patient subgroups). The findings implicated a loss of excitatory input to V1 in schizophrenia. Acuity as measured in the current study reflected disease status, and medication level was associated with improved tVEP responses. These novel tVEP techniques may be useful in revealing neurophysiological processes affected in schizophrenia and as a clinical tool.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10633-023-09921-2DOI Listing

Publication Analysis

Top Keywords

frequency-domain measures
12
tvep measures
12
patients controls
12
measures
10
transient visual
8
visual evoked
8
evoked potentials
8
time-domain measures
8
band power/msc
8
peak time
8

Similar Publications

Data on full stationary wave-field measurement of a suspended steel plate punctually loaded.

Data Brief

February 2025

Institut Camille Jordan, UMR-CNRS 5208, École Centrale de Lyon, 36 Avenue Guy de Collongue, 69134, Écully, France.

The dataset presented contains the experimental structural response, in the frequency domain, of a suspended steel plate to a point force excitation. The plate is excited by a mechanical point force generated by a Brüel & kJær shaker with a white noise signal input from 3.125 Hz to 2000 Hz.

View Article and Find Full Text PDF

Frequency-domain thermoreflectance with beam offset without the spot distortion for accurate thermal conductivity measurement of anisotropic materials.

Rev Sci Instrum

January 2025

Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura C3, Nishikyo-ku, Kyoto 615-8540, Japan.

The measurement of thermal conductivities of anisotropic materials and atomically thin films is pivotal for the thermal design of next-generation electronic devices. Frequency-domain thermoreflectance (FDTR) is a pump-probe technique that is known for its accurate and straightforward approach to determining thermal conductivity and stands out as one of the most effective methodologies. Existing research has focused on advancing a measurement system that incorporates beam-offset FDTR.

View Article and Find Full Text PDF

Rail corrugation intensifies wheel-rail vibrations, often leading to damage in vehicle-track system components within affected sections. This paper proposes a novel method for identifying rail corrugation, which combines Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), permutation entropy (PE), and Smoothed Pseudo Wigner-Ville Distribution (SPWVD). Initially, vertical acceleration data from the axle box are decomposed using CEEMDAN to extract intrinsic mode functions (IMFs) with distinct frequencies.

View Article and Find Full Text PDF

This paper presents, for the first time to the best of our knowledge, simultaneous temperature and relative humidity (RH) measurement using a machine learning (ML) model in Rayleigh-based Optical Frequency Domain Reflectometry (OFDR). The sensor unit consists of two segments: bare and polyimide-coated fibers, each with different sensitivities to temperature. The polyimide-coated fiber is RH-sensitive, unlike the bare fiber.

View Article and Find Full Text PDF

Shock wave boundary/layer interactions (SWBLIs) are critical in high-speed aerodynamic flows, particularly within supersonic regimes, where unsteady dynamics can induce structural fatigue and degrade vehicle performance. Conventional measurement techniques, such as pressure-sensitive paint (PSP), face limitations in frequency response, calibration complexity, and intrusive instrumentation. Similarly, MEMS-based sensors, like Kulite sensors, present challenges in terms of intrusiveness, cost, and integration complexity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!