Giant viruses (GVs) are a hotspot of unresolved controversies since their discovery, including the definition of "Virus" and their origin. While increasing knowledge of genome diversity has accumulated, GV functional genomics was largely neglected. Here, we describe an experimental framework to genetically modify nuclear GVs and their host Acanthamoeba castellanii using CRISPR/Cas9, shedding light on the evolution from small icosahedral viruses to amphora-shaped GVs. Ablation of the icosahedral major capsid protein in the phylogenetically-related mollivirus highlights a transition in virion shape and size. We additionally demonstrate the existence of a reduced core essential genome in pandoravirus, reminiscent of their proposed smaller ancestors. This proposed genetic expansion led to increased genome robustness, indicating selective pressures for adaptation to uncertain environments. Overall, we introduce new tools for manipulation of the unexplored genome of nuclear GVs and provide experimental evidence suggesting that viral gigantism has aroused as an emerging trait.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879987 | PMC |
http://dx.doi.org/10.1038/s41467-023-36145-4 | DOI Listing |
Soft Robot
January 2025
Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Soft robots and bioinspired systems have revolutionized robot design by incorporating flexibility and deformable materials inspired by nature's ingenious designs. Similar to many robotic applications, sensing and perception are paramount to enable soft robots to adeptly navigate the unpredictable real world, ensuring safe interactions with both humans and the environment. Despite recent progress, soft robot sensorization still faces significant challenges due to the virtual infinite degrees of freedom of the system and the need for efficient computational models capable of estimating valuable information from sensor data.
View Article and Find Full Text PDFThe rapid growth, invasiveness, and resistance to treatment of glioblastoma multiforme (GBM) underscore the urgent need for improved diagnostics and therapies. Current surgical practice is limited by challenges with intraoperative imaging, while recurrence monitoring requires expensive magnetic resonance or nuclear imaging scans. Here we introduce 'acoustic tumor paint', an approach to labeling brain tumors for ultrasound imaging, a widely accessible imaging modality.
View Article and Find Full Text PDFJ Assist Reprod Genet
December 2023
Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB) Jette Campus, Laarbeeklaan 103, 1090, Brussels, Belgium.
Purpose: Glucose and redox metabolism characterization in mouse antral follicles with meiotically blocked oocytes, after in vitro follicle culture (IFC) from the early secondary stage.
Methods: Following IFC (10 days), oocytes, corresponding cumulus (CC), and granulosa cells (GC) were collected from antral follicles: (i) on day 9-immature, germinal vesicle (GV) stage; (ii) on day 10, after hCG/EGF stimulation-mature, metaphase II (MII) stage and meiotically blocked (MB) immature GV stage. The metabolic profiles of all samples (GV, MII, and MB) were compared by measuring changes in metabolites involved in glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway (PPP), and redox activity via enzymatic spectrophotometric assays in each cell type.
F S Sci
August 2023
Brigham and Women's Hospital Center for Infertility and Reproductive Surgery, Harvard Medical School, Boston, Massachusetts; Department of Obstetrics, Gynecology and Reproductive Medicine, Hôpital Foch, Suresnes, France.
Objective: To assess whether co-culture with vitrified-warmed cumulus cells (CCs) in media drops improves rescue in vitro maturation (IVM) of previously vitrified immature oocytes. Previous studies have shown improved rescue IVM of fresh immature oocytes when cocultured with CCs in a three-dimensional matrix. However, the scheduling and workload of embryologists would benefit from a simpler IVM approach, particularly in the setting of time-sensitive oncofertility oocyte cryopreservation (OC) cases.
View Article and Find Full Text PDFSignal Transduct Target Ther
May 2023
CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Gene delivery is the process by which foreign DNA is transferred to host cells, released from intracellular vesicles, and transported to the nuclei for transcription. This process is frequently inefficient and difficult to control spatiotemporally. We developed a gene delivery strategy that uses ultrasound to directly deliver plasmid DNA into nuclei via gas vesicles (GVs)-based intracellular cavitation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!