A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New perforated radiation shield for anesthesiologists: Monte Carlo simulation of effects. | LitMetric

Catheterization for structural heart disease (SHD) requires fluoroscopic guidance, which exposes health care professionals to radiation exposure risk. Nevertheless, existing freestanding radiation shields for anesthesiologists are typically simple, uncomfortable rectangles. Therefore, we devised a new perforated radiation shield that allows anesthesiologists and echocardiographers to access a patient through its apertures during SHD catheterization. No report of the relevant literature has described the degree to which the anesthesiologist's radiation dose can be reduced by installing radiation shields. For estimating whole-body doses to anesthesiologists and air dose distributions in the operating room, we used a Monte Carlo system for a rapid dose-estimation system used with interventional radiology. The simulations were performed under four conditions: no radiation shield, large apertures, small apertures and without apertures. With small apertures, the doses to the lens, waist and neck surfaces were found to be comparable to those of a protective plate without an aperture, indicating that our new radiation shield copes with radiation protection and work efficiency. To simulate the air-absorbed dose distribution, results indicated that a fan-shaped area of the dose rate decrease was generated in the area behind the shield, as seen from the tube sphere. For the aperture, radiation was found to wrap around the backside of the shield, even at a height that did not match the aperture height. The data presented herein are expected to be of interest to all anesthesiologists who might be involved in SHD catheterization. The data are also expected to enhance their understanding of radiation exposure protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036102PMC
http://dx.doi.org/10.1093/jrr/rrac106DOI Listing

Publication Analysis

Top Keywords

radiation shield
16
radiation
10
perforated radiation
8
monte carlo
8
radiation exposure
8
radiation shields
8
shd catheterization
8
apertures small
8
small apertures
8
shield
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!