A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Discovery, synthesis and mechanism study of 2,3,5-substituted [1,2,4]-thiadiazoles as covalent inhibitors targeting 3C-Like protease of SARS-CoV-2. | LitMetric

Discovery, synthesis and mechanism study of 2,3,5-substituted [1,2,4]-thiadiazoles as covalent inhibitors targeting 3C-Like protease of SARS-CoV-2.

Eur J Med Chem

School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Clinical Research and Trial Center, Shanghai, 201210, China. Electronic address:

Published: March 2023

The 3C-like protease (3CL) is essential for the replication and transcription of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), making it a promising target for the treatment of corona virus disease 2019 (COVID-19). In this study, a series of 2,3,5-substituted [1,2,4]-thiadiazole analogs were discovered to be able to inhibit 3CL as non-peptidomimetic covalent binders at submicromolar levels, with IC values ranging from 0.118 to 0.582 μM. Interestingly, these compounds were also shown to inhibit PL with the same level of IC values, but had negligible effect on proteases such as chymotrypsin, cathepsin B, and cathepsin L. Subsequently, the antiviral abilities of these compounds were evaluated in cell-based assays, and compound 6g showed potent antiviral activity with an EC value of 7.249 μM. It was proposed that these compounds covalently bind to the catalytic cysteine 145 via a ring-opening metathesis reaction mechanism. To understand this covalent-binding reaction, we chose compound 6a, one of the identified hit compounds, as a representative to investigate the reaction mechanism in detail by combing several computational predictions and experimental validation. The process of ring-opening metathesis was theoretically studied using quantum chemistry calculations according to the transition state theory. Our study revealed that the 2,3,5-substituted [1,2,4]-thiadiazole group could covalently modify the catalytic cysteine in the binding pocket of 3CL as a potential warhead. Moreover, 6a was a known GPCR modulator, and our study is also a successful computational method-based drug-repurposing study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847367PMC
http://dx.doi.org/10.1016/j.ejmech.2023.115129DOI Listing

Publication Analysis

Top Keywords

3c-like protease
8
235-substituted [124]-thiadiazole
8
catalytic cysteine
8
ring-opening metathesis
8
reaction mechanism
8
study
5
discovery synthesis
4
synthesis mechanism
4
mechanism study
4
study 235-substituted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!