A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@cof+hybrid&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

One-step fabrication of hydrophobic metal-organic framework@covalent organic framework hybrid as sorbent for high-performance solid-phase extraction of flavonoids. | LitMetric

One-step fabrication of hydrophobic metal-organic framework@covalent organic framework hybrid as sorbent for high-performance solid-phase extraction of flavonoids.

J Chromatogr A

CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:

Published: February 2023

Metal-organic framework (MOF) and covalent organic framework (COF) exhibit excellent extraction performance in sample pretreatment, but their wider application is hindered by some inherent drawbacks. Herein, we successfully synthesized a novel MOF@COF hybrid material with large specific surface area, good chemical stability and reusability, which is suitable as a solid phase extraction (SPE) sorbent for the efficient extraction of flavonoids. Importantly, due to the synergistic effect, the obtained MOF@COF hybrid material showing a higher extraction efficiency than individual MOF and COF. This is mainly due to the obtained MOF@COF hybrid material combines the high specific surface area of MOF and multiple interactions (hydrophobic interaction, hydrogen bonding and π-π stacking interaction) with flavonoids conferred by the COF structure. Then, a sensitive analytical method for flavonoids with ideal linear range (1-500 ng mL), low detection limit (0.15-0.41 ng mL) and good repeatability (2.64-6.20%) was developed under optimized conditions. In addition, the MOF@COF hybrid sorbent has better selectivity for hydrophobic targets containing multiple hydrogen bond acceptors/donors. Finally, the established method was applied to the determination of flavonoids in different food samples, and satisfactory recoveries (81.4-102.1%) were obtained, which initially confirmed its applicability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2023.463814DOI Listing

Publication Analysis

Top Keywords

mof@cof hybrid
16
hybrid material
12
organic framework
8
hybrid sorbent
8
extraction flavonoids
8
specific surface
8
surface area
8
hybrid
5
extraction
5
flavonoids
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!