A portable colorimetric point-of-care testing platform for MicroRNA detection based on programmable entropy-driven dynamic DNA network modulated DNA-gold nanoparticle hybrid hydrogel film.

Biosens Bioelectron

Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, PR China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, PR China. Electronic address:

Published: April 2023

Point-of-care testing (POCT) platforms for microRNA (miRNA) detection have attracted considerable attention in recent years, due to the increasingly important role of miRNA as biomarkers for the diagnosis of many diseases, such as cancers. However, several limitations such as the requirement of enzyme-related amplification system, expensive preservation cost, sophisticated analysis instruments and tedious operations of conventional miRNA biosensing devices severely hinder their widespread applications. In this work, a portable and smart colorimetric analysis platform was developed by employing the ultrathin DNA-gold nanoparticle (AuNP) hybrid hydrogel film as the signaling unit and the enzyme-free entropy-driven dynamic DNA network (EDN) as the signal converter and amplification unit. By programming the DNA sequences of the EDN, the EDN could respond to a specific miRNA, with miRNA-155 or miRNA-21 as the model target, and release a converter DNA with amplified concentration to further trigger the release of AuNPs from the hydrogel film as a colorimetric signal output. To avoid the use of sophisticated spectral instruments, digital analysis based on primary three-color channel (R/G/B) was further introduced by using user-friendly camera and image processing software, and a detection limit at pM level was achieved. Moreover, by introducing HO-mediated AuNPs enlargement procedure in the colorimetric analysis platform, the detection limit for miRNA target could further be enhanced to fM level. The POCT platform is also portable and storable with a good storage stability for at least 45 days, suggesting its great potential in practical diagnosis applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115073DOI Listing

Publication Analysis

Top Keywords

hydrogel film
12
point-of-care testing
8
entropy-driven dynamic
8
dynamic dna
8
dna network
8
dna-gold nanoparticle
8
hybrid hydrogel
8
colorimetric analysis
8
analysis platform
8
detection limit
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!