A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exotic Reaction Dynamics in the Gas-Phase Preparation of Anthracene (CH) via Spiroaromatic Radical Transients in the Indenyl-Cyclopentadienyl Radical-Radical Reaction. | LitMetric

The gas-phase reaction between the 1-indenyl (CH) radical and the cyclopentadienyl (CH) radical has been investigated for the first time using synchrotron-based mass spectrometry coupled with a pyrolytic reactor. Soft photoionization with tunable vacuum ultraviolet photons afforded for the isomer-selective identification of the production of phenanthrene, anthracene, and benzofulvalene (CH). The classical theory prevalent in the literature proposing that radicals combine only at their specific radical centers is challenged by our discovery of an unusual reaction pathway that involves a barrierless combination of a resonantly stabilized hydrocarbon radical with an aromatic radical at the carbon atom adjacent to the traditional C1 radical center; this unconventional addition is followed by substantial isomerization into phenanthrene and anthracene via a category of exotic spiroaromatic intermediates. This result leads to a deeper understanding of the evolution of the cosmic carbon budget and provides new methodologies for the bottom-up synthesis of unique spiroaromatics that may be relevant for the synthesis of more complex aromatic carbon skeletons in deep space.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c12045DOI Listing

Publication Analysis

Top Keywords

phenanthrene anthracene
8
radical
7
exotic reaction
4
reaction dynamics
4
dynamics gas-phase
4
gas-phase preparation
4
preparation anthracene
4
anthracene spiroaromatic
4
spiroaromatic radical
4
radical transients
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!