The dual leucine zipper kinase (DLK) and the ubiquitously expressed transcription factor c-FOS have important roles in beta-cell proliferation and function. Some studies in neuronal cells suggest that DLK can influence c-FOS expression. Given that c-FOS is mainly regulated at the transcriptional level, the effect of DLK on c-FOS promoter activity was investigated in the beta-cell line HIT. The methods used in this study are the following: Luciferase reporter gene assays, immunoblot analysis, CRISPR-Cas9-mediated genome editing, and real-time quantitative PCR. In the beta-cell line HIT, overexpressed DLK increased c-FOS promoter activity twofold. Using 5'-,3'-promoter deletions, the promoter regions from - 348 to - 339 base pairs (bp) and from a - 284 to - 53 bp conferred basal activity, whereas the promoter region from - 711 to - 348 bp and from - 53 to + 48 bp mediated DLK responsiveness. Mutation of the cAMP response element within the promoter prevented the stimulatory effect of DLK. Treatment of HIT cells with KCl and the adenylate cyclase activator forskolin increased c-FOS promoter transcriptional activity ninefold. Since the transcriptional activity of those promoter fragments activated by KCl and forskolin was decreased by DLK, DLK might interfere with KCl/forskolin-induced signaling. In a newly generated, genome-edited HIT cell line lacking catalytically active DLK, c-Fos mRNA levels were reduced by 80% compared to the wild-type cell line. DLK increased c-FOS promoter activity but decreased stimulated transcriptional activity, suggesting that DLK fine-tunes c-FOS promoter-dependent gene transcription. Moreover, at least in HIT cells, DLK is required for FOS mRNA expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185614 | PMC |
http://dx.doi.org/10.1007/s00210-023-02401-z | DOI Listing |
J Transl Med
January 2025
Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China.
Background: Dysregulated energy metabolism has emerged as a defining hallmark of cancer, particularly evident in triple-negative breast cancer (TNBC). Distinct from other breast cancer subtypes, TNBC exhibits heightened glycolysis and aggressiveness. However, the transcriptional mechanisms of aerobic glycolysis in TNBC remains poorly understood.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:
Activation of immunoglobulin E (IgE)-associated mast cells (MCs) triggers the onset of pro-inflammatory signals associated with type I allergic diseases. Although histone acetylation changes have been associated with inflammatory diseases, the impact of lysine-acetyltransferase (KAT) inhibitors on IgE-mediated MCs function is unclear. Potential anti-allergic effects of the KAT6A inhibitor WM-1119 on IgE-mediated MCs activation and allergic inflammation were examined in this study.
View Article and Find Full Text PDFMol Cell
December 2024
Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA; Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA. Electronic address:
Regulation of gene expression during development and stress response requires the concerted action of transcription factors and chromatin-binding proteins. Because this process is cell-type specific and varies with cellular conditions, mapping of chromatin factors at individual regulatory loci is crucial for understanding cis-regulatory control. Previous methods only characterize static protein binding.
View Article and Find Full Text PDFMol Med
December 2024
Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
Background: Bone remodeling is a critical process that maintains skeletal integrity, orchestrated by the balanced activities of osteoclasts, which resorb bone, and osteoblasts, which form bone. Osteoclastogenesis, the formation of osteoclasts, is primarily driven by NFATc1, a process activated through c-Fos and NF-κB signaling pathways in response to receptor activator of nuclear factor κB ligand (RANKL). Dysregulation of RANKL signaling is a key contributor to pathological bone loss, as seen in conditions such as osteoporosis.
View Article and Find Full Text PDFJ Biol Chem
December 2024
School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, China. Electronic address:
Metastasis is a major cause of fatality in hepatocellular carcinoma (HCC), although the precise mechanisms driving the metastatic process remain incompletely understood. In this study, we have made several important findings. Firstly, we have discovered that elevated activation-induced cytidine deaminase (AID) expression is positively correlated with Jagged 1 (JAG1) levels in clinically metastatic HCC patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!