Increase of c-FOS promoter transcriptional activity by the dual leucine zipper kinase.

Naunyn Schmiedebergs Arch Pharmacol

Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Published: June 2023

AI Article Synopsis

  • The dual leucine zipper kinase (DLK) influences the expression of c-FOS, a transcription factor crucial for beta-cell growth and function, suggesting a regulatory relationship between the two.
  • Research using the beta-cell line HIT demonstrated that DLK can increase c-FOS promoter activity, particularly affecting specific DNA regions and requiring a particular cAMP response element for this stimulation to occur.
  • Interestingly, while DLK enhances c-FOS promoter activity, it also reduces the transcriptional response to stimuli like KCl and forskolin, indicating that DLK plays a complex role in regulating c-FOS expression.

Article Abstract

The dual leucine zipper kinase (DLK) and the ubiquitously expressed transcription factor c-FOS have important roles in beta-cell proliferation and function. Some studies in neuronal cells suggest that DLK can influence c-FOS expression. Given that c-FOS is mainly regulated at the transcriptional level, the effect of DLK on c-FOS promoter activity was investigated in the beta-cell line HIT. The methods used in this study are the following: Luciferase reporter gene assays, immunoblot analysis, CRISPR-Cas9-mediated genome editing, and real-time quantitative PCR. In the beta-cell line HIT, overexpressed DLK increased c-FOS promoter activity twofold. Using 5'-,3'-promoter deletions, the promoter regions from - 348 to - 339 base pairs (bp) and from a - 284 to - 53 bp conferred basal activity, whereas the promoter region from - 711 to - 348 bp and from - 53 to + 48 bp mediated DLK responsiveness. Mutation of the cAMP response element within the promoter prevented the stimulatory effect of DLK. Treatment of HIT cells with KCl and the adenylate cyclase activator forskolin increased c-FOS promoter transcriptional activity ninefold. Since the transcriptional activity of those promoter fragments activated by KCl and forskolin was decreased by DLK, DLK might interfere with KCl/forskolin-induced signaling. In a newly generated, genome-edited HIT cell line lacking catalytically active DLK, c-Fos mRNA levels were reduced by 80% compared to the wild-type cell line. DLK increased c-FOS promoter activity but decreased stimulated transcriptional activity, suggesting that DLK fine-tunes c-FOS promoter-dependent gene transcription. Moreover, at least in HIT cells, DLK is required for FOS mRNA expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185614PMC
http://dx.doi.org/10.1007/s00210-023-02401-zDOI Listing

Publication Analysis

Top Keywords

c-fos promoter
20
transcriptional activity
16
promoter activity
12
increased c-fos
12
dlk
11
promoter
9
c-fos
9
promoter transcriptional
8
activity
8
dual leucine
8

Similar Publications

FOSL1 transcriptionally dictates the Warburg effect and enhances chemoresistance in triple-negative breast cancer.

J Transl Med

January 2025

Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China.

Background: Dysregulated energy metabolism has emerged as a defining hallmark of cancer, particularly evident in triple-negative breast cancer (TNBC). Distinct from other breast cancer subtypes, TNBC exhibits heightened glycolysis and aggressiveness. However, the transcriptional mechanisms of aerobic glycolysis in TNBC remains poorly understood.

View Article and Find Full Text PDF

Histone acetylation alteration by KAT6A inhibitor WM-1119 suppresses IgE-mediated mast cell activation and allergic inflammation via reduction in AP-1 signaling.

Biochem Pharmacol

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:

Activation of immunoglobulin E (IgE)-associated mast cells (MCs) triggers the onset of pro-inflammatory signals associated with type I allergic diseases. Although histone acetylation changes have been associated with inflammatory diseases, the impact of lysine-acetyltransferase (KAT) inhibitors on IgE-mediated MCs function is unclear. Potential anti-allergic effects of the KAT6A inhibitor WM-1119 on IgE-mediated MCs activation and allergic inflammation were examined in this study.

View Article and Find Full Text PDF

TurboCas: A method for locus-specific labeling of genomic regions and isolating their associated protein interactome.

Mol Cell

December 2024

Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA; Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA. Electronic address:

Regulation of gene expression during development and stress response requires the concerted action of transcription factors and chromatin-binding proteins. Because this process is cell-type specific and varies with cellular conditions, mapping of chromatin factors at individual regulatory loci is crucial for understanding cis-regulatory control. Previous methods only characterize static protein binding.

View Article and Find Full Text PDF

Background: Bone remodeling is a critical process that maintains skeletal integrity, orchestrated by the balanced activities of osteoclasts, which resorb bone, and osteoblasts, which form bone. Osteoclastogenesis, the formation of osteoclasts, is primarily driven by NFATc1, a process activated through c-Fos and NF-κB signaling pathways in response to receptor activator of nuclear factor κB ligand (RANKL). Dysregulation of RANKL signaling is a key contributor to pathological bone loss, as seen in conditions such as osteoporosis.

View Article and Find Full Text PDF

Epigenetic activation of JAG1 by AID contributes to metastasis of hepatocellular carcinoma.

J Biol Chem

December 2024

School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, China. Electronic address:

Metastasis is a major cause of fatality in hepatocellular carcinoma (HCC), although the precise mechanisms driving the metastatic process remain incompletely understood. In this study, we have made several important findings. Firstly, we have discovered that elevated activation-induced cytidine deaminase (AID) expression is positively correlated with Jagged 1 (JAG1) levels in clinically metastatic HCC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!