Real-time breath isoprene sensing provides noninvasive methods for monitoring human metabolism and early diagnosis of cardiovascular diseases. Nonetheless, the stable alkene structure and high humidity of the breath hinder sensitive and selective isoprene detection. In this work, we derived well-defined CoO@polyoxometalate yolk-shell structures using a metal-organic framework template. The inner space, including highly catalytic CoO yolks surrounded by a semipermeable polyoxometalate shell, enables stable isoprene to be reformed to reactive intermediate species by increasing the gas residence time and the reaction with the inner catalyst. This sensor exhibited selective isoprene detection with an extremely high chemiresistive response (180.6) and low detection limit (0.58 ppb). The high sensing performance can be attributed to electronic sensitization and catalytic promotion effects. In addition, the reforming reaction of isoprene is further confirmed by the proton transfer reaction-quadrupole mass spectrometry analysis. The practical feasibility of this sensor in smart healthcare applications is exhibited by monitoring muscle activity during the workout.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c20416 | DOI Listing |
Langmuir
January 2025
College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
The development of probes for the efficient detection of volatile organic compounds is crucial for both human health protection and environmental monitoring. In this study, we successfully synthesized a ratiometric fluorescent sensing material [Eu-UiO-67 (1:1)], featuring dual-emission fluorescence peaks via a one-pot method. This material demonstrated exceptional ratiometric fluorescence recognition properties for liquid styrene and isoprene, achieving low limit of detections (LODs) of 6.
View Article and Find Full Text PDFSensors (Basel)
December 2024
UFZ Helmholtz Centre for Environmental Research, Department Monitoring and Exploration Technologies, Permoserstraße 15, 04318 Leipzig, Germany.
Ion mobility spectrometry is successfully used as a sensor technology for different applications. A feature of this method is that characteristic ion mobility spectra are obtained for each measurement rather than a sum signal. The spectra result from the different drift velocities of ions in a drift tube at atmospheric pressure.
View Article and Find Full Text PDFEnviron Pollut
December 2024
National Astronomical Research Institute of Thailand (Public Organization), Chiang Mai, Thailand. Electronic address:
Volatile organic compounds (VOCs) notably influence air quality, climate and secondary pollutant formation, particularly regions in where urban emissions interact with natural biogenic sources at the interface of urban and natural ecosystems. This study examined the VOC profiles in the Sakaerat dry evergreen forest and the urban area of Nakhon Ratchasima, Thailand, throughout 2023, focusing on seasonal and spatial variations in biogenic and anthropogenic VOCs (BVOCs and AVOCs, respectively). Hydrocarbons, mainly alkanes, dominated VOC compositions, contributing 43.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Biogenic volatile organic compounds (BVOCs) contribute to the formation of secondary organic aerosol (SOA) through atmospheric oxidation. Previously detected SOA-markers in northern hemisphere ice cores from Alaska, Greenland, Russia, and Switzerland indicate the transportation of isoprene and monoterpene oxidation products from their forestry sources to these glacial regions. Antarctica is geographically further removed from the BVOC's source, indicating significantly lower SOA-marker concentrations are likely in southern hemisphere ice cores.
View Article and Find Full Text PDFRSC Adv
November 2024
Siargo Ltd Santa Clara California 95054 USA.
[This corrects the article DOI: 10.1039/D4RA00184B.].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!