Uniting photothermal therapy (PTT) with magnetic resonance imaging (MRI) holds great potential in nanotheranostics. However, the extensively utilized hydrophobicity-driven assembling strategy not only restricts the intramolecular motion-induced PTT, but also blocks the interactions between MR agents and water. Herein, we report an aggregation-induced emission luminogen (AIEgen)-mediated polyelectrolyte nanoassemblies (APN) strategy, which bestows a unique "soft" inner microenvironment with good water permeability. Femtosecond transient spectra verify that APN well activates intramolecular motion from the twisted intramolecular charge transfer process. This de novo APN strategy uniting synergistically three factors (rotational motion, local motion, and hydration number) brings out high MR relaxivity. For the first time, APN strategy has successfully modulated both intramolecular motion and magnetic relaxivity, achieving fluorescence lifetime imaging of tumor spheroids and spatio-temporal MRI-guided high-efficient PTT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202218983 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan Road, 200240, Shanghai, CHINA.
Covalent adaptable networks (CANs), a novel class of crosslinked polymers with dynamic covalent bonds, have gained significant attention for combining the durability of thermosets with the reprocessability of thermoplastics, making them promising for emerging applications. Here, we report the first example of poly[2]rotaxane-type CANs (PRCANs), in which oligo[2]rotaxane backbones characterized by densely packed mechanical bonds, are cross-linked through dynamic C-N bond. Oligo[2]rotaxane backbones could guarantee the mechanical properties of CANs.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, The University of Akron, Akron, OH 44325, USA.
The chalcone derivatives with hydroxy group () have been examined using low-temperature fluorescence spectroscopy. The study aimed to freeze the intramolecular charge transfer (ICT) motion in order to reveal the potential hidden transition(s) that are difficult to observe at room temperature. Although chalcone revealed one emission peak at ~667 nm at room temperature, it exhibited two emission peaks (λ = 580 and 636 nm) in EtOH at liquid N temperatures (77 K).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China; Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China. Electronic address:
It is very challenging to prepare carbon dots (CDs) with aggregation-induced emission (AIE) property for simultaneous sensitive sensing and efficient removal. Herein, blue-emission CDs were facilely prepared by one-step solvothermal treatment of vine tea. Optical characterizations demonstrated that AIE phenomenon of CDs came from the restricted intramolecular motion.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China. Electronic address:
The widely recognized phytohormone, salicylic acid (SA), serves not only as an exogenous additive for fruits and vegetables but, more crucially, as an in vivo regulator of the entire plant growth process. Consequently, it is essential to achieve both in vitro detection and in vivo imaging analysis of the plant hormone SA. In this study, a biocompatible supramolecular probe was crafted using a "label-free" SA aptamer as the host for an aggregation-induced emission (AIE) organic small molecule.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China.
As a unique property of the interlocked structures, rotaxane allows for intramolecular motions between its wheel and axle components. Introduction of rotaxanes into polymers can endow them with distinctive macroscopic features and outstanding mechanical properties. Here, we prepare a copillar[5]arene with a hydroxyl and an amino-group on each end, which can spontaneously form a pseudo[1]rotaxane through intramolecular hydrogen bonds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!