Aging is accompanied by cardiovascular disorders which is associated with an imbalance of pro- and antioxidant systems, the mitochondrial dysfunction, etc. Glutathione (GSH) plays a critical role in protecting cells from oxidative damage. The aim of the work was to study the effect of exogenous glutathione on the redox status of mitochondria, the content of HS and the function of the cardiovascular system in old rats. Experiments were performed on adult (6 months) and old (24 months) Wistar rats divided into three groups: adult, old and glutathionetreated old rats. Glutathione was injected intraperitoneally at a dose of 52 mg/kg. We investigated glutathione redox balance, HS levels, oxidative stress, the opening of the mitochondrial permeability transition pore (mPTP), the resistance of isolated heart to ischemia/reperfusion in Langendorff model, endothelium-dependent vasorelaxation of isolated aortic rings, and cardiac levels of , , and mRNA were determined using real-time PCR analysis. Our data shows that in old rats treated with glutathione, the balance of its oxidized and reduced form changes in the direction of a significant increase (by 53.6%) of the reduced form. Glutathione pretreatment significantly increased the HS levels, mtNOS activity, and expression which considered as protective protein, and conversely, significantly decreased oxidative stress markers (the rate of O• generation, the levels of HO, diene conjugates and malone dialdehyde, in 2.5, 2.3, 2, and 1.6 times, respectively) in heart mitochondria. This was associated with the inhibition mitochondrial permeability transition pore opening and increased resistance of the isolated heart to ischemia/reperfusion in these animals. At the same time, in glutathione-treated old rats, we also observed restoration of endothelium-dependent vasorelaxation responses to acetylcholine, which were almost completely abolished by the NO-synthase inhibitor L-NAME. Thus, the pretreatment of old rats with glutathione restores the mitochondrial redox status and improves the function of the cardiovascular system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868586 | PMC |
http://dx.doi.org/10.3389/fphys.2022.1093388 | DOI Listing |
Free Radic Biol Med
January 2025
Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan. Electronic address:
Enzymatically formed side-chain oxysterols function as signaling molecules regulating cholesterol homeostasis and act as intermediates in the biosynthesis of bile acids. In addition to these physiological functions, an imbalance in oxysterol homeostasis has been implicated in pathophysiology. Cholesterol 25-hydroxylase (CH25H) and its product 25-hydroxycholesterol (25-OHC), also formed by autoxidation, are associated with amyotrophic lateral sclerosis.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
Circulating mature red blood cells (RBCs) from patients and mice with sickle cell disease (SCD) abnormally retain mitochondria, a factor shown to contribute to the disease's pathobiology. To further understand the functional implications of RBC mitochondria retention in SCD, we used mitochondria inhibitors and metabolites/substrates from the tricarboxylic acid cycle, oxidative phosphorylation and glycolysis pathways (ADP, glutamate, malate, pyruvate, succinate or all metabolites combined) and examined RBC bioenergetics, reactive oxygen species (ROS) levels, calcium flux and hydration. In RBCs from sickle mice, mitochondria inhibition reduced ATP levels by 30%-60%, whereas control RBCs were unaffected.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacy-(DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy.
The retinal pigment epithelium (RPE) contributes to retinal homeostasis, and its metabolic dysfunction is implied in the development of retinal degenerative disease. The isoform M2 of pyruvate kinase (PKM2) is a key factor in cell metabolism, and its function may be affected by insulin-like growth factor 1 (IGF-1). This study aims to investigate the effect of IGF-1 on PKM2 modulation of RPE cells and whether co-treatment with klotho may preserve it.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Medicine, Nankai University, Tianjin 300071, China.
Ferroptosis, a novel form of cell death discovered in recent years, is typically accompanied by significant iron accumulation and lipid peroxidation during the process. This article systematically elucidates how tumor metabolic reprogramming affects the ferroptosis process in tumor cells. The paper outlines the basic concepts and physiological significance of tumor metabolic reprogramming and ferroptosis, and delves into the specific regulatory mechanisms of glucose metabolism, protein metabolism, and lipid metabolism on ferroptosis.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece.
: DNA damage response (DDR) is a network of molecular pathways associated with the pathogenesis and progression of several diseases, as well as the outcome of chemotherapy. Moreover, the intracellular redox status is essential for maintaining cell viability and controlling cellular signaling. Herein, we analyzed DDR signals and redox status in peripheral blood mononuclear cells (PBMCs) from patients with lung cancer with different response rates to platinum-based chemotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!