Relevance of mineralized nodules in two-dimensional (2D) osteoblast/osteocyte cultures to bone biology, pathology, and engineering is a decades old question, but a comprehensive answer appears to be still wanting. Bone-like cells, extracellular matrix (ECM), and mineral were all reported but so were non-bone-like ones. Many studies described seemingly bone-like cell-ECM structures based on similarity to few select bone features in vivo, yet no studies examined multiple bone features simultaneously and none systematically studied all types of structures coexisting in the same culture. Here, we report such comprehensive analysis of 2D cultures based on light and electron microscopies, Raman microspectroscopy, gene expression, and in situ messenger RNA (mRNA) hybridization. We demonstrate that 2D cultures of primary cells from mouse calvaria do form bona fide bone. Cells, ECM, and mineral within it exhibit morphology, structure, ultrastructure, composition, spatial-temporal gene expression pattern, and growth consistent with intramembranous ossification. However, this bone is just one of at least five different types of cell-ECM structures coexisting in the same 2D culture, which vary widely in their resemblance to bone and ability to mineralize. We show that the other two mineralizing structures may represent abnormal (disrupted) bone and cartilage-like structure with chondrocyte-to-osteoblast transdifferentiation. The two nonmineralizing cell-ECM structures may mimic periosteal cambium and pathological, nonmineralizing osteoid. Importantly, the most commonly used culture conditions (10mM β-glycerophosphate) induce artificial mineralization of all cell-ECM structures, which then become barely distinguishable. We therefore discuss conditions and approaches promoting formation of bona fide bone and simple means for distinguishing it from the other cell-ECM structures. Our findings may improve osteoblast differentiation and function analyses based on 2D cultures and extend applications of these cultures to general bone biology and tissue engineering research. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850442 | PMC |
http://dx.doi.org/10.1002/jbm4.10701 | DOI Listing |
Small
January 2025
Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India.
Cancer metastasis involves cell migration from their primary organ foci into vascular channels, followed by dissemination to prospective colonization sites. Vascular entry of tumor cells or intravasation involves their breaching stromal and endothelial extracellular matrix (ECM) and the endothelial barriers. How the kinetics of this breach are confounded by chronic inflammatory stresses seen in diabetes and aging remains ill-investigated.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, they established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM-mimetic synthetic, fiber matrices, and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), enabling real-time contractility readouts, in-depth structural assessment, and tissue-specific computational modeling.
View Article and Find Full Text PDFJ Theor Biol
January 2025
School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, United Kingdom. Electronic address:
To function and survive cells need to be able to sense and respond to their local environment through mechanotransduction. Crucially, mechanical and biochemical perturbations initiate cell signalling cascades, which can induce responses such as growth, apoptosis, proliferation and differentiation. At the heart of this process are actomyosin stress fibres (SFs), which form part of the cell cytoskeleton, and focal adhesions (FAs), which bind this cytoskeleton to the extra-cellular matrix (ECM).
View Article and Find Full Text PDFBiomacromolecules
November 2024
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides.
View Article and Find Full Text PDFBiomater Res
September 2024
Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Along with a paradigm shift in looking at soft tissue fillers from space-filling to bioactive materials, decellularized extracellular matrix (DEM) fillers have gained more attention considering their superior bioactivity. However, the complex mechanisms that govern the interaction between host tissues and DEMs have been partially understood. This review first covers the mechanisms that determine immunogenicity, angiogenesis and vasculogenesis, and recellularization and remodeling after DEM implantation into host tissue, with a particular focus on related findings from filler materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!