Glycidol is a well-known food contaminant mainly formed in refined edible oils and various thermally processed foods. Here, we studied the toxicity effects and related mechanism of glycidol on Human umbilical vein endothelial cells (HUVECs). Glycidol was found to induce Gap period 2 (G2)/Mitosis (M) phase cell cycle arrest, apoptosis, and autophagy in HUVECs. Inhibition of autophagy by 3-methyladenine (3-MA) attenuated glycidol-induced cell death, suggesting that glycidol-induced apoptosis was autophagy-dependent. Moreover, glycidol treatment induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal protein kinase (JNK), and p38. Inhibition of ERK, JNK, and p38 phosphorylation by the inhibitors U0126, SP600125, and SB203580 attenuated glycidol-induced autophagy and prevented glycidol-mediated reduction in cell viability, demonstrating that glycidol inhibited HUVECs growth by inducing autophagic-dependent apoptosis through activation of the ERK, JNK and p38 signaling pathways. In addition, apigenin (API) and its octoic acid diester apigenin-7 (API-C8), 4'-O-dioctanoate were found to significantly attenuate glycidol-induced cell growth inhibition by inhibiting the above signaling pathways. Collectively, glycidol induces autophagic-dependent apoptosis via activating the ERK/JNK/p38 signaling pathways in HUVECs and API-C8 could attenuate the toxicity effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868870PMC
http://dx.doi.org/10.1016/j.crfs.2023.100447DOI Listing

Publication Analysis

Top Keywords

signaling pathways
16
attenuated glycidol-induced
12
autophagic-dependent apoptosis
12
jnk p38
12
octoic acid
8
acid diester
8
erk/jnk/p38 signaling
8
human umbilical
8
umbilical vein
8
vein endothelial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!