Network-based approaches for modeling disease regulation and progression.

Comput Struct Biotechnol J

Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.

Published: December 2022

AI Article Synopsis

  • Molecular interaction networks are crucial for understanding the complex relationships between genes and proteins that control biological functions and diseases.
  • Recent advances in omics technologies have led to the creation of large datasets that allow for extensive network-based analyses, which utilize various modeling techniques to uncover disease mechanisms.
  • The article discusses recent methods in network analysis, their importance for biomedical research, particularly in drug development and precision medicine, and challenges that call for more dynamic and integrative approaches in studying disease progression.

Article Abstract

Molecular interaction networks lay the foundation for studying how biological functions are controlled by the complex interplay of genes and proteins. Investigating perturbed processes using biological networks has been instrumental in uncovering mechanisms that underlie complex disease phenotypes. Rapid advances in omics technologies have prompted the generation of high-throughput datasets, enabling large-scale, network-based analyses. Consequently, various modeling techniques, including network enrichment, differential network extraction, and network inference, have proven to be useful for gaining new mechanistic insights. We provide an overview of recent network-based methods and their core ideas to facilitate the discovery of disease modules or candidate mechanisms. Knowledge generated from these computational efforts will benefit biomedical research, especially drug development and precision medicine. We further discuss current challenges and provide perspectives in the field, highlighting the need for more integrative and dynamic network approaches to model disease development and progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841310PMC
http://dx.doi.org/10.1016/j.csbj.2022.12.022DOI Listing

Publication Analysis

Top Keywords

network-based approaches
4
approaches modeling
4
disease
4
modeling disease
4
disease regulation
4
regulation progression
4
progression molecular
4
molecular interaction
4
interaction networks
4
networks lay
4

Similar Publications

Quantification of L-lactic acid in human plasma samples using Ni-based electrodes and machine learning approach.

Talanta

December 2024

NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:

This work presents a robust strategy for quantifying overlapping electrochemical signatures originating from complex mixtures and real human plasma samples using nickel-based electrochemical sensors and machine learning (ML). This strategy enables the detection of a panel of analytes without being limited by the selectivity of the transducer material and leaving accommodation of interference analysis to ML models. Here, we fabricated a non-enzymatic electrochemical sensor for L-lactic acid detection in complex mixtures and human plasma samples using nickel oxide (NiO) nanoparticle-modified glassy carbon electrodes (GCE).

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) presents significant challenges in chemotherapy response prediction due to its molecular heterogeneity. Current methods often fail to account for the complexity and variability inherent in individual tumors.

Methods: We developed a novel approach using matched CRC tumor and organoid gene expression data.

View Article and Find Full Text PDF

Following recent advances in post-thrombectomy stroke care, the role of neuroinflammation and neuroprotective strategies in mitigating secondary injury has gained prominence. Yet, while neuroprotection and anti-inflammatory agents have re-emerged in clinical trials, their success has been limited. The neuroinflammatory response in cerebral ischemia is robust and multifactorial, complicating therapeutic approaches targeting single pathways.

View Article and Find Full Text PDF

Flutter is an extremely significant academic topic in both aerodynamics and aircraft design. Since flutter can cause multiple types of phenomena including bifurcation, period doubling, and chaos, it becomes one of the most unpredictable instability phenomena. The complexity of modeling aeroelasticity of high flexibility wings will be substantially simplified by investigating the prospect of system identification techniques to forecast flutter velocity.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), characterized by significant brain volume reduction, is influenced by genetic predispositions related to brain volumetric phenotypes. While genome-wide association studies (GWASs) have linked brain imaging-derived phenotypes (IDPs) with AD, existing polygenic risk scores (PRSs) based models inadequately capture this relationship. We develop BrainNetScore, a network-based model enhancing AD risk prediction by integrating genetic associations between multiple brain IDPs and AD incidence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!