Surface plasmon resonance (SPR) has emerged as one of the most efficient and attractive techniques for optical sensors in biological applications. The traditional approach of an EC (electrochemical)-SPR biosensor to generate SPR is by adopting a prism underneath the sensing substrate, and an angular scan is performed to characterize the reflectivity of target analytes. In this paper, we designed and investigated a novel optical biosensor based on a hybrid plasmonic and electrochemical phenomenon. The SPR was generated from a thin layer of gold nanohole array on a glass substrate. Using C-Reactive Protein (CRP) as the target analyte, we tested our device for different concentrations and observed the optical response under various voltage bias conditions. We observed that SPR response is concentration-dependent and can be modulated by varying DC voltages or AC bias frequencies. For CRP concentrations ranging from 1 to 1000 µg/mL, at the applied voltage of -600 mV, we obtained a limit of detection for this device of 16.5 ng/mL at the resonance peak wavelength of 690 nm. The phenomenon is due to spatial re-distribution of electron concentration at the metal-solution interface. The results suggest that CRP concentration can be determined from the SPR peak wavelength shift by scanning the voltages. The proposed new sensor structure is permissible for various future optoelectronic integration for plasmonic and electrochemical sensing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842002PMC
http://dx.doi.org/10.1364/BOE.478164DOI Listing

Publication Analysis

Top Keywords

surface plasmon
8
plasmon resonance
8
gold nanohole
8
plasmonic electrochemical
8
peak wavelength
8
spr
5
voltage-modulated surface
4
resonance biosensors
4
biosensors integrated
4
integrated gold
4

Similar Publications

Single Nucleotide Polymorphism Highlighted via Heterogeneous Light-Induced Dissipative Structure.

ACS Sens

January 2025

Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan.

The unique characteristics of biological structures depend on the behavior of DNA sequences confined in a microscale cell under environmental fluctuations and dissipation. Here, we report a prominent difference in fluorescence from dye-modified single-stranded DNA in a light-induced assembly of DNA-functionalized heterogeneous probe particles in a microwell of several microliters in volume. Strong optical forces from the Mie scattering of microparticles accelerated hybridization, and the photothermal effect from the localized surface plasmons in gold nanoparticles enhanced specificity to reduce the fluorescence intensity of dye-modified DNA to a few %, even in a one-base mismatched sequence, enabling us to clearly highlight the single nucleotide polymorphisms in DNA.

View Article and Find Full Text PDF

The development of small molecule drugs that target protein binders is the central goal in medicinal chemistry. During the lead compound development process, hundreds or even thousands of compounds are synthesized, with the primary focus on their binding affinity to protein targets. Typically, IC or EC values are used to rank these compounds.

View Article and Find Full Text PDF

N-acetyl-tryptophan in Acute Kidney Injury after Cardiac Surgery.

J Am Soc Nephrol

January 2025

State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.

Background: Cardiac surgery-associated acute kidney injury is a common serious complication after cardiac surgery. Currently, there are no specific pharmacological therapies. Our understanding of its pathophysiology remains preliminary.

View Article and Find Full Text PDF

Bacterial spores are highly resilient and capable of surviving extreme conditions, making them a persistent threat in contexts such as disease transmission, food safety, and bioterrorism. Their ability to withstand conventional sterilization methods necessitates rapid and accurate detection techniques to effectively mitigate the risks they present. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) approach for detecting spores by targeting calcium dipicolinate acid (CaDPA), a biomarker uniquely associated with bacterial spores.

View Article and Find Full Text PDF

Mid-infrared thermal radiation has attracted attention due to its wide range of applications. Compared to the static process of thermal emission, if thermal radiation can be dynamically controlled, it would be more suitable for practical applications. Herein, we designed a controllable thermal emitter based on phase change materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!