The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization. However, the distribution and release of siRNA still cannot be effectively monitored. In this study, based on the fluorescence resonance energy transfer (FRET) principle, a fluorescence dye Cy5-modified survivin siRNA was conjugated to nanogolds (Au-DR-siRNA), which were then wrapped with lipid nanoparticles (LNPs) for monitoring the release behaviour of siRNA . The results showed that once Au-DR-siRNA was released from the LNPs and cleaved by the Dicer enzyme to produce free siRNA in cells, the fluorescence of Cy5 would change from quenched state to activated state, showing the location and time of siRNA release. Besides, the LNPs showed a significant antitumor effect by silencing the survivin gene and a CT imaging function superior to iohexol by nanogolds. Therefore, this work provided not only an effective method for monitoring the pharmacokinetic behaviour of LNP-based siRNA, but also a siRNA delivery system for treating and diagnosing tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849873 | PMC |
http://dx.doi.org/10.1016/j.ajps.2022.11.003 | DOI Listing |
Prog Mol Biol Transl Sci
January 2025
Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India. Electronic address:
The groundbreaking CRISPR-Cas gene editing method permits exact genetic code alteration. The "CRISPR" DNA protects bacteria from viruses. CRISPR-Cas utilizes a guide RNA to steer the Cas enzyme to the genome's gene editing target.
View Article and Find Full Text PDFInt J Pharm
January 2025
National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China. Electronic address:
Lipid nanoparticle (LNP)-mediated RNA delivery holds significant potential for the treatment of various liver diseases. Ionizable lipids play a crucial role in the formulation of LNPs and directly influence their delivery efficiency. In this study, we introduced an innovative concept by incorporating an ether bond into the hydrophobic tail of ionizable lipids for the first time.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 43150, Sweden.
Targeted delivery of therapeutic agents is a persistent challenge in modern medicine. Recent efforts in this area have highlighted the utility of extracellular vesicles (EVs) as drug carriers, given that they naturally occur in bloodstream and tissues, and can be loaded with a wide range of therapeutic molecules. However, biodistribution and tissue tropism of EVs remain difficult to study systematically.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Global Regulatory Affairs CMC, Sanofi, Marcy-l'Etoile, France.
Lipid nanoparticles (LNPs) for nucleic acid delivery often use novel lipids as functional excipients to modulate the biodistribution, pharmacokinetics, pharmacodynamics and efficacy of the nucleic acid. Novel excipients used in pharmaceutical products are subject to heightened regulatory scrutiny and often require data packages comparable to an active pharmaceutical ingredient. Although these regulatory requirements may help to ensure patient safety they also create economic and procedural barriers that can disincentivize innovation and delay clinical investigation.
View Article and Find Full Text PDFAAPS J
January 2025
Moderna, Inc., Cambridge, Massachusetts, USA.
While the branched DNA (bDNA) assay is an established bioanalytical method for measurement of lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) pharmacokinetic parameters, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been considered as an alternative platform. RT-qPCR and bDNA platforms were compared for sensitivity, specificity, correlation, and overall assay performance using serum and tissue samples from 2 nonclinical mouse studies of a therapeutic mRNA candidate, LNP-PAH-mRNA, which encodes for human phenylalanine hydroxylase enzyme. Pharmacokinetic parameter noncompartmental analysis was completed using Phoenix WinNonlin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!