A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of bone metastasis in non-small cell lung cancer based on machine learning. | LitMetric

AI Article Synopsis

  • The paper aimed to create a machine learning algorithm to predict bone metastasis in non-small cell lung cancer (NSCLC) and to establish an easy-to-use web predictor based on this algorithm.
  • Researchers analyzed data from over 50,000 NSCLC patients, identifying key risk factors like sex and tumor stage through various statistical methods and six different machine learning models.
  • The XGB algorithm proved to be the most effective model, achieving high accuracy scores, and was used to develop a web tool that might help doctors make better clinical decisions regarding NSCLC patients.

Article Abstract

Objective: The purpose of this paper was to develop a machine learning algorithm with good performance in predicting bone metastasis (BM) in non-small cell lung cancer (NSCLC) and establish a simple web predictor based on the algorithm.

Methods: Patients who diagnosed with NSCLC between 2010 and 2018 in the Surveillance, Epidemiology and End Results (SEER) database were involved. To increase the extensibility of the research, data of patients who first diagnosed with NSCLC at the First Affiliated Hospital of Nanchang University between January 2007 and December 2016 were also included in this study. Independent risk factors for BM in NSCLC were screened by univariate and multivariate logistic regression. At this basis, we chose six commonly machine learning algorithms to build predictive models, including Logistic Regression (LR), Decision tree (DT), Random Forest (RF), Gradient Boosting Machine (GBM), Naive Bayes classifiers (NBC) and eXtreme gradient boosting (XGB). Then, the best model was identified to build the web-predictor for predicting BM of NSCLC patients. Finally, area under receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity were used to evaluate the performance of these models.

Results: A total of 50581 NSCLC patients were included in this study, and 5087(10.06%) of them developed BM. The sex, grade, laterality, histology, T stage, N stage, and chemotherapy were independent risk factors for NSCLC. Of these six models, the machine learning model built by the XGB algorithm performed best in both internal and external data setting validation, with AUC scores of 0.808 and 0.841, respectively. Then, the XGB algorithm was used to build a web predictor of BM from NSCLC.

Conclusion: This study developed a web predictor based XGB algorithm for predicting the risk of BM in NSCLC patients, which may assist doctors for clinical decision making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869148PMC
http://dx.doi.org/10.3389/fonc.2022.1054300DOI Listing

Publication Analysis

Top Keywords

machine learning
16
web predictor
12
nsclc patients
12
xgb algorithm
12
bone metastasis
8
metastasis non-small
8
non-small cell
8
cell lung
8
lung cancer
8
nsclc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!