Background: Survival prediction for cervical cancer is usually based on its stage at diagnosis or a multivariate nomogram. However, few studies cared whether long-term survival improved after they survived for several years. Meanwhile, traditional survival analysis could not calculate this dynamic outcome. We aimed to assess the improvement of survival over time using conditional survival (CS) analysis and developed a novel conditional survival nomogram (CS-nomogram) to provide individualized and real-time prognostic information.
Methods: Cervical cancer patients were collected from the Surveillance, Epidemiology, and End Results (SEER) database. The Kaplan-Meier method estimated cancer-specific survival (CSS) and calculated the conditional CSS (C-CSS) at year y+x after giving x years of survival based on the formula C-CSS(y|x) =CSS(y+x)/CSS(x). y indicated the number of years of further survival under the condition that the patient was determined to have survived for x years. The study identified predictors by the least absolute shrinkage and selection operator (LASSO) regression and used multivariate Cox regression to demonstrate these predictors' effect on CSS and to develop a nomogram. Finally, the CSS possibilities predicted by the nomogram were brought into the C-CSS formula to create the CS-nomogram.
Results: A total of 18,511 patients aged <65 years with cervical cancer from 2004 to 2019 were included in this study. CS analysis revealed that the 15-year CSS increased year by year from the initial 72.6% to 77.8%, 84.5%, 88.8%, 91.5%, 93.5%, 94.8%, 95.7%, 96.4%, 97.3%, 98.0%, 98.5%, 99.1%, and 99.4% (after surviving for 1-13 years, respectively), and found that when survival exceeded 5-6 years, the risk of death from cervical cancer would be less than 5% in 10-15 years. The CS-nomogram constructed using tumor size, lymph node status, distant metastasis status, and histological grade showed strong predictive performance with a concordance index (C-index) of 0.805 and a stable area under the curve (AUC) between 0.795 and 0.816 over 15 years.
Conclusions: CS analysis in this study revealed the gradual improvement of CSS over time in long-term survived cervical cancer patients. We applied CS to the nomogram and developed a CS-nomogram successfully predicting individualized and real-time prognosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868950 | PMC |
http://dx.doi.org/10.3389/fonc.2022.1049531 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!