The pressure due to electrophoretic motion of a charged colloidal sphere in a fluid-filled circular cylinder is determined in the limit in which the sphere radius is small compared with that of the cylinder. If the ends of the cylinder are open, pressure-driven Poiseuille flow occurs, but the magnitude of this flow is shown to be small when the cylinder is long compared to its radius. It is concluded that the flow has little effect upon electrophoretic velocities, unlike when the diameter of the sphere is comparable to that of the cylinder in which case the Poiseuille flow increases electrophoretic velocities and creates long-range interactions between spheres.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.202200285 | DOI Listing |
CVIR Endovasc
December 2024
Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi Abenoku, Osaka, 545-8585, Japan.
Background: Fractional flow reserve (FFR) can be estimated by analysis of intravascular imaging in a coronary artery; however, there are no data for estimated FFR in an extremity artery. The aim of this concept-generating study was to determine whether it is possible to estimate the value of peripheral FFR (PFFR) by intravascular ultrasound (IVUS) analysis also in femoropopliteal artery lesions.
Methods: Between April 2022 and February 2023, PFFR was measured before endovascular therapy in 31 stenotic femoropopliteal artery lesions.
PNAS Nexus
December 2024
RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.
Hydrodynamics is known to emerge in electron flow when the electron-electron interaction dominates over the other momentum-nonconserving scatterings. The hydrodynamic equation that describes the electric current includes viscosity, extending beyond the Ohmic flow. The laminar flow of such a viscous electron fluid in a sample with finite width is referred to as the Poiseuille flow, where the flow velocity is maximum at the center and decreases towards the edges of the sample.
View Article and Find Full Text PDFNeurogastroenterol Motil
December 2024
Laboratoire Matière et Systèmes Complexes UMR 7057, Université Paris Cité/CNRS, Paris, France.
Background: The gut, the ureter, or the Fallopian tube all transport biological fluids by generating trains of propagating smooth muscle constrictions collectively known as peristalsis. These tubes connect body compartments at different pressures. We extend here Poiseuille's experiments on liquid flow in inert tubes to an active, mechanosensitive tube: the intestine.
View Article and Find Full Text PDFHeliyon
October 2024
University of Chinese Academy of Sciences, Beijing, 101408, China.
The pore throat size, structure distribution, and lithology of porous media in gas reservoirs are varied, and the gas-water two-phase seepage law is complex, making it difficult to describe the seepage model. Newton's law of motion is a basic law of motion in classical mechanics, and its application in gas-water two-phase seepage modeling is an innovative practice of classical mechanics in seepage mechanics systems. Based on Newton's three laws of motion, a gas-water two-phase seepage model was established from the force analysis of fluid, and the relationship between velocity and pressure difference, pipe radius, water film thickness, viscosity, etc.
View Article and Find Full Text PDFJ Chem Phys
December 2024
State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
Comprehending the flow dynamics of ionic solutions within nanoconfined spaces is imperative for diverse applications encompassing desalination, nanofiltration, energy storage, and electrochemical devices. When the confinement space is further reduced to 1 nm (Ångstrom scale), monolayer ionic solutions will emerge. In this regime, ions not only have the ability to influence water properties such as viscosity but also primarily modify the interactions and corresponding slip length (or friction coefficient) between the solution and wall.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!