P2-Na[FeMn]O layered oxide is a promising high energy density cathode material for sodium-ion batteries. However, one of its drawbacks is the poor long-term stability in the operating voltage window of 1.5-4.25 V vs Na/Na that prevents its commercialization. In this work, additional light is shed on the origin of capacity fading, which has been analyzed using a combination of experimental techniques and theoretical methods. Electrochemical impedance spectroscopy has been performed on P2-Na[FeMn]O half-cells operating in two different working voltage windows, one allowing and one preventing the high voltage phase transition occurring in P2-Na[FeMn]O above 4.0 V vs Na/Na; so as to unveil the transport properties at different states of charge and correlate them with the existing phases in P2-Na[FeMn]O. Supporting X-ray photoelectron spectroscopy experiments to elucidate the surface properties along with theoretical calculations have concluded that the formed electrode-electrolyte interphase is very thin and stable, mainly composed by inorganic species, and reveal that the structural phase transition at high voltage from P2- to "Z"/OP4-oxygen stacking is associated with a drastic increased in the bulk electronic resistance of P2-Na[FeMn]O electrodes which is one of the causes of the observed capacity fading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814619PMC
http://dx.doi.org/10.1038/s42004-022-00628-0DOI Listing

Publication Analysis

Top Keywords

voltage window
8
cathode material
8
sodium-ion batteries
8
capacity fading
8
high voltage
8
phase transition
8
p2-na[femn]o
6
role voltage
4
window capacity
4
capacity retention
4

Similar Publications

pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.

View Article and Find Full Text PDF

In order to broaden the working voltage (1.23 V) of aqueous supercapacitors, a high-performance asymmetric supercapacitor with a working voltage window reaching up to 2.1 V is assembled using a nanorod-shaped molybdenum trioxide (MoO) negative electrode and an activated carbon (AC) positive electrode, as well as a sodium sulfate-ethylene glycol ((NaSO-EG) electrolyte.

View Article and Find Full Text PDF

Water is pursued as an electrolyte solvent for its non-flammable nature compared to traditional organic solvents, yet its narrow electrochemical stability window (ESW) limits its performance. Solvation chemistry design is widely adopted as the key to suppress the reactivity of water, thereby expanding the ESW. In this study, an acetamide-based ternary eutectic electrolyte achieved an ESW ranging from 1.

View Article and Find Full Text PDF

Enhancing Quasi-Solid-State Lithium-Metal Battery Performance: Multi-Interlayer, Melt-Infused Lithium and Lithiophilic Coating Strategies for Interfacial Stability in Li||VS-DSGNS-LATP|PEO-PVDF||NMC622-AlO Systems.

ACS Appl Mater Interfaces

December 2024

Advanced Functional Nanomaterials Research Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University (A Central University), Dr. R. Venkataraman Nagar, Kalapet, Puducherry 605014, India.

The development of quasi-solid-state lithium metal batteries (QSSLMBs) is hindered by inadequate interfacial contact, poor wettability between electrodes and quasi-solid-state electrolytes, and significant volume changes during long-term cycling, leading to safety risks and cataclysmic failures. Here, we report an innovative approach to enhance interfacial properties through the construction of QSSLMBs. A multilayer design integrates a microwave-synthesized LiAlTi(PO) (LATP) ceramic electrolyte, which is surface-coated with a lithiophilic conductive ink comprising VS and disulfonated functionalized graphene nanosheets (VS-DSGNS) using a low-cost nail-polish binder.

View Article and Find Full Text PDF

Non-Flammable fluorinated gel polymer electrolyte for safe lithium metal batteries in harsh environments.

J Colloid Interface Sci

December 2024

Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

Compared to liquid electrolytes, gel polymer electrolytes (GPEs) offer enhanced safety and represent an up-and-coming option for high-energy-density lithium metal batteries (LMBs). However, several challenges hindered the practical application of GPEs for LMBs, such as low ionic conductivity at room temperature, decomposition at high voltage, and poor interfacial compatibility with lithium anode. In this study, a non-flammable fluorinated GPE was synthesized using 2,2,2-trifluoroethyl acrylate (TFEA) and ethoxylated trimethylolpropane triacrylate (ETPTA) as precursor materials, with succinonitrile (SN) incorporated as a plasticizer and a dual-salt system of lithium bis(trifluoro-methane) sulfonimide and lithium difluoroxalate borate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!