A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acid is a potential interferent in fluorescent sensing of chemical warfare agent vapors. | LitMetric

Acid is a potential interferent in fluorescent sensing of chemical warfare agent vapors.

Commun Chem

Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.

Published: March 2021

A common feature of fluorescent sensing materials for detecting chemical warfare agents (CWAs) and simulants is the presence of nitrogen-based groups designed to nucleophilically displace a phosphorus atom substituent, with the reaction causing a measurable fluorescence change. However, such groups are also basic and so sensitive to acid. In this study we show it is critical to disentangle the response of a candidate sensing material to acid and CWA simulant. We report that pyridyl-containing sensing materials designed to react with a CWA gave a strong and rapid increase in fluorescence when exposed to Sarin, which is known to contain hydrofluoric acid. However, when tested against acid-free diethylchlorophosphate and di-iso-propylfluorophosphate, simulants typically used for evaluating novel G-series CWA sensors, there was no change in the fluorescence. In contrast, simulants that had been stored or tested under a standard laboratory conditions all led to strong changes in fluorescence, due to acid impurities. Thus the results provide strong evidence that care needs to be taken when interpreting the results of fluorescence-based solid-state sensing studies of G-series CWAs and their simulants. There are also implications for the application of these pyridyl-based fluorescence and other nucleophilic/basic sensing systems to real-world CWA detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814523PMC
http://dx.doi.org/10.1038/s42004-021-00482-6DOI Listing

Publication Analysis

Top Keywords

fluorescent sensing
8
chemical warfare
8
sensing materials
8
cwas simulants
8
sensing
6
acid
5
fluorescence
5
acid potential
4
potential interferent
4
interferent fluorescent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!